应用分层聚类算法所需的时间最常由成对差异度量的计算数量主导。对于较大的数据集,这种约束使所有经典链接标准的使用都处于不利地位。但是,众所周知,单个连锁聚类算法对离群值非常敏感,产生高度偏斜的树状图,因此通常不会反映出真正的潜在数据结构 - 除非簇分离良好。为了克服其局限性,我们提出了一个名为Genie的新的分层聚类链接标准。也就是说,我们的算法将两个簇链接在一起,以至于选择的经济不平等度量(例如,gini-或bonferroni index)的群集大小不会大大增加超过给定阈值。提出的基准表明引入的方法具有很高的实际实用性:它通常优于病房或平均链接的聚类质量,同时保持单个连锁的速度。 Genie算法很容易平行,因此可以在多个线程上运行以进一步加快其执行。它的内存开销很小:无需预先计算完整的距离矩阵即可执行计算以获得所需的群集。它可以应用于配备有差异度量的任意空间,例如,在实际矢量,DNA或蛋白质序列,图像,排名,信息图数据等上。有关R。另请参见https://genieclust.gagolewski.com有关新的实施(GenieClust) - 可用于R和Python。
translated by 谷歌翻译
内部群集有效性度量(例如Calinski-Harabasz,Dunn或Davies-Bouldin指数)经常用于选择适当数量的分区数量,应将数据集分为二。在本文中,我们考虑如果将这些索引视为无监督学习活动中的客观功能会发生什么。关于轮廓指数的最佳分组是否真的有意义?事实证明,许多群集有效性指数促进了聚类,这些聚类与专家知识相匹配。我们还引入了邓恩指数的一个新的,表现出色的变体,该变体是建立在OWA操作员和接近邻居图的基础上的,因此,无论其形状如何,都可以更好地相互分离。
translated by 谷歌翻译
We review clustering as an analysis tool and the underlying concepts from an introductory perspective. What is clustering and how can clusterings be realised programmatically? How can data be represented and prepared for a clustering task? And how can clustering results be validated? Connectivity-based versus prototype-based approaches are reflected in the context of several popular methods: single-linkage, spectral embedding, k-means, and Gaussian mixtures are discussed as well as the density-based protocols (H)DBSCAN, Jarvis-Patrick, CommonNN, and density-peaks.
translated by 谷歌翻译
索引是支持大型数据库中有效查询处理的有效方法。最近,已积极探索了替代或补充传统索引结构的学习指数的概念,以降低存储和搜索成本。但是,在高维度空间中准确有效的相似性查询处理仍然是一个开放的挑战。在本文中,我们提出了一种称为LIMS的新型索引方法,该方法使用数据群集,基于枢轴的数据转换技术和学习的索引来支持度量空间中的有效相似性查询处理。在LIM中,将基础数据分配到簇中,使每个群集都遵循相对均匀的数据分布。数据重新分布是通过利用每个集群的少量枢轴来实现的。类似的数据被映射到紧凑的区域,而映射的值是完全顺序的。开发机器学习模型是为了近似于磁盘上每个数据记录的位置。有效的算法设计用于基于LIMS的处理范围查询和最近的邻居查询,以及具有动态更新的索引维护。与传统索引和最先进的学习索引相比,对现实世界和合成数据集的广泛实验证明了LIM的优势。
translated by 谷歌翻译
本文研究了分层聚类问题,其中目标是生产一种在数据集的变化尺度上表示集群的树形图。我们提出了用于设计并行分层凝聚聚类(HAC)算法的Parchain框架,并使用该框架,我们获得了全面连锁,平均联系和病房的联动标准的新颖平行算法。与最先前的并行HAC算法相比,这需要二次存储器,我们的新算法仅需要线性存储器,并且可以扩展到大数据集。 PARCHAIN基于我们最近邻的链算法的并行化,并使多个群集能够在每一轮上合并。我们介绍了两个关键优化,这对于效率至关重要:范围查询优化,减少查找群集的最近邻居所需的距离计算数,以及存储可能重复使用的先前计算的距离子集的缓存优化。通过实验,我们表明,我们的高度优化实现,使用48个核心,通过双向超线程实现5.8--110.1倍的加速,通过最先进的并行HAC算法,实现了13.75--54.23倍的自相对加速。与最先进的算法相比,我们的算法较少的空间少于237.3倍。我们的算法能够扩展到具有数百万点的数据集大小,现有算法无法处理该算法。
translated by 谷歌翻译
分层群集的主要挑战之一是如何适当地识别群集树较低级别的代表点,这些点将被用作群集树的较高级别的根源以进行进一步的聚合。然而,传统的分层聚类方法采用了一些简单的技巧来选择可能不像代表的“代表”点。因此,构造的簇树在其稳健性和可靠性较弱的方面不太吸引。针对这个问题,我们提出了一种新的分层聚类算法,其中,在构建聚类树形图的同时,我们可以有效地检测基于对每个子最小跨越树中的互易读数的互动最近数据点进行评分的代表点。 UCI数据集的广泛实验表明,所提出的算法比其他基准更准确。同时,在我们的分析下,所提出的算法具有O(nlogn)时间复杂度和O(logn)空间复杂度,表明它具有在处理具有更少时间和存储消​​耗的大规模数据方面具有可扩展性。
translated by 谷歌翻译
没有,也不会有单一的最佳聚类算法,但是我们仍然希望能够确定那些在某些任务类型上表现出色并过滤掉系统令人失望的人。传统上,使用内部或外部有效性度量评估聚类算法。内部度量量化了所获得的分区的不同方面,例如簇紧凑性或点可分离性的平均程度。然而,他们的有效性是值得怀疑的,因为他们促进的聚类有时可能毫无意义。另一方面,外部措施将算法的输出与专家提供的基础真相分组进行了比较。常规的经典分区相似性分数,例如归一化的互信息,福克斯 - 马洛或调整后的兰德指数,可能没有所有期望的特性,例如,它们无法正确识别病理边缘病例。此外,它们不能很好地解释:很难说出0.8的分数。它的行为也可能随着真实簇的数量的变化而有所不同。这使得在许多基准数据集中比较聚类算法变得困难。为了解决这个问题,我们提出并分析了一种新措施:最佳设置匹配精度的不对称版本。它可以纠正机会和集群大小的不平衡性。
translated by 谷歌翻译
Standard agglomerative clustering suggests establishing a new reliable linkage at every step. However, in order to provide adaptive, density-consistent and flexible solutions, we study extracting all the reliable linkages at each step, instead of the smallest one. Such a strategy can be applied with all common criteria for agglomerative hierarchical clustering. We also study that this strategy with the single linkage criterion yields a minimum spanning tree algorithm. We perform experiments on several real-world datasets to demonstrate the performance of this strategy compared to the standard alternative.
translated by 谷歌翻译
群集分析需要许多决定:聚类方法和隐含的参考模型,群集数,通常,几个超参数和算法调整。在实践中,一个分区产生多个分区,基于验证或选择标准选择最终的分区。存在丰富的验证方法,即隐式或明确地假设某个聚类概念。此外,它们通常仅限于从特定方法获得的分区上操作。在本文中,我们专注于可以通过二次或线性边界分开的群体。参考集群概念通过二次判别符号函数和描述集群大小,中心和分散的参数定义。我们开发了两个名为二次分数的群集质量标准。我们表明这些标准与从一般类椭圆对称分布产生的组一致。对这种类型的组追求在应用程序中是常见的。研究了与混合模型和模型的聚类的似然理论的连接。基于Bootstrap重新采样的二次分数,我们提出了一个选择规则,允许在许多聚类解决方案中选择。所提出的方法具有独特的优点,即它可以比较不能与其他最先进的方法进行比较的分区。广泛的数值实验和实际数据的分析表明,即使某些竞争方法在某些设置中出现优越,所提出的方法也实现了更好的整体性能。
translated by 谷歌翻译
Clustering algorithms are attractive for the task of class identification in spatial databases. However, the application to large spatial databases rises the following requirements for clustering algorithms: minimal requirements of domain knowledge to determine the input parameters, discovery of clusters with arbitrary shape and good efficiency on large databases. The well-known clustering algorithms offer no solution to the combination of these requirements. In this paper, we present the new clustering algorithm DBSCAN relying on a density-based notion of clusters which is designed to discover clusters of arbitrary shape. DBSCAN requires only one input parameter and supports the user in determining an appropriate value for it. We performed an experimental evaluation of the effectiveness and efficiency of DBSCAN using synthetic data and real data of the SEQUOIA 2000 benchmark. The results of our experiments demonstrate that (1) DBSCAN is significantly more effective in discovering clusters of arbitrary shape than the well-known algorithm CLAR-ANS, and that (2) DBSCAN outperforms CLARANS by factor of more than 100 in terms of efficiency.
translated by 谷歌翻译
We investigate the use of Minimax distances to extract in a nonparametric way the features that capture the unknown underlying patterns and structures in the data. We develop a general-purpose and computationally efficient framework to employ Minimax distances with many machine learning methods that perform on numerical data. We study both computing the pairwise Minimax distances for all pairs of objects and as well as computing the Minimax distances of all the objects to/from a fixed (test) object. We first efficiently compute the pairwise Minimax distances between the objects, using the equivalence of Minimax distances over a graph and over a minimum spanning tree constructed on that. Then, we perform an embedding of the pairwise Minimax distances into a new vector space, such that their squared Euclidean distances in the new space equal to the pairwise Minimax distances in the original space. We also study the case of having multiple pairwise Minimax matrices, instead of a single one. Thereby, we propose an embedding via first summing up the centered matrices and then performing an eigenvalue decomposition to obtain the relevant features. In the following, we study computing Minimax distances from a fixed (test) object which can be used for instance in K-nearest neighbor search. Similar to the case of all-pair pairwise Minimax distances, we develop an efficient and general-purpose algorithm that is applicable with any arbitrary base distance measure. Moreover, we investigate in detail the edges selected by the Minimax distances and thereby explore the ability of Minimax distances in detecting outlier objects. Finally, for each setting, we perform several experiments to demonstrate the effectiveness of our framework.
translated by 谷歌翻译
We consider a semi-supervised $k$-clustering problem where information is available on whether pairs of objects are in the same or in different clusters. This information is either available with certainty or with a limited level of confidence. We introduce the PCCC algorithm, which iteratively assigns objects to clusters while accounting for the information provided on the pairs of objects. Our algorithm can include relationships as hard constraints that are guaranteed to be satisfied or as soft constraints that can be violated subject to a penalty. This flexibility distinguishes our algorithm from the state-of-the-art in which all pairwise constraints are either considered hard, or all are considered soft. Unlike existing algorithms, our algorithm scales to large-scale instances with up to 60,000 objects, 100 clusters, and millions of cannot-link constraints (which are the most challenging constraints to incorporate). We compare the PCCC algorithm with state-of-the-art approaches in an extensive computational study. Even though the PCCC algorithm is more general than the state-of-the-art approaches in its applicability, it outperforms the state-of-the-art approaches on instances with all hard constraints or all soft constraints both in terms of running time and various metrics of solution quality. The source code of the PCCC algorithm is publicly available on GitHub.
translated by 谷歌翻译
近年来,在平衡(超级)图分配算法的设计和评估中取得了重大进展。我们调查了过去十年的实用算法的趋势,用于平衡(超级)图形分区以及未来的研究方向。我们的工作是对先前有关该主题的调查的更新。特别是,该调查还通过涵盖了超图形分区和流算法来扩展先前的调查,并额外关注并行算法。
translated by 谷歌翻译
The accuracy of k-nearest neighbor (kNN) classification depends significantly on the metric used to compute distances between different examples. In this paper, we show how to learn a Mahalanobis distance metric for kNN classification from labeled examples. The Mahalanobis metric can equivalently be viewed as a global linear transformation of the input space that precedes kNN classification using Euclidean distances. In our approach, the metric is trained with the goal that the k-nearest neighbors always belong to the same class while examples from different classes are separated by a large margin. As in support vector machines (SVMs), the margin criterion leads to a convex optimization based on the hinge loss. Unlike learning in SVMs, however, our approach requires no modification or extension for problems in multiway (as opposed to binary) classification. In our framework, the Mahalanobis distance metric is obtained as the solution to a semidefinite program. On several data sets of varying size and difficulty, we find that metrics trained in this way lead to significant improvements in kNN classification. Sometimes these results can be further improved by clustering the training examples and learning an individual metric within each cluster. We show how to learn and combine these local metrics in a globally integrated manner.
translated by 谷歌翻译
从一组给定对象中计算共识对象是机器学习和模式识别的核心问题。一种流行的方法是使用广义中位数将其作为优化问题。先前的方法(例如原型和距离嵌入方法)将对象转换为矢量空间,解决该空间中的广义中值问题,并反相转换回原始空间。这两种方法已成功地应用于广泛的对象域,其中广义的中值问题具有固有的高计算复杂性(通常为$ \ Mathcal {np} $ - 硬),因此需要近似解决方案。以前,在计算中使用了显式嵌入方法,这通常不反映对象之间的空间关系。在这项工作中,我们介绍了一个基于内核的广义中间框架,该框架适用于积极的确定和无限核。该框架计算对象与其在内核空间中的广义中位数之间的关系,而无需显式嵌入。我们表明,与使用易于计算的内核相比,对象之间的空间关系比在显式矢量空间中更准确地表示,并在三个不同域的数据集上展示了广义中值计算的出色性能。我们的工作产生的软件工具箱可公开使用,以鼓励其他研究人员探索广义的中位数计算和应用。
translated by 谷歌翻译
We present a novel clustering algorithm, visClust, that is based on lower dimensional data representations and visual interpretation. Thereto, we design a transformation that allows the data to be represented by a binary integer array enabling the further use of image processing methods to select a partition. Qualitative and quantitative analyses show that the algorithm obtains high accuracy (measured with an adjusted one-sided Rand-Index) and requires low runtime and RAM. We compare the results to 6 state-of-the-art algorithms, confirming the quality of visClust by outperforming in most experiments. Moreover, the algorithm asks for just one obligatory input parameter while allowing optimization via optional parameters. The code is made available on GitHub.
translated by 谷歌翻译
在本文中,我们提出了一个自然的单个偏好(IP)稳定性的概念,该概念要求每个数据点平均更接近其自身集群中的点,而不是其他群集中的点。我们的概念可以从几个角度的动机,包括游戏理论和算法公平。我们研究了与我们提出的概念有关的几个问题。我们首先表明,确定给定数据集通常允许进行IP稳定的聚类通常是NP-HARD。结果,我们探索了在某些受限度量空间中查找IP稳定聚类的有效算法的设计。我们提出了一种poly Time算法,以在实际线路上找到满足精确IP稳定性的聚类,并有效地算法来找到针对树度量的IP稳定2聚类。我们还考虑放松稳定性约束,即,与其他任何集群相比,每个数据点都不应太远。在这种情况下,我们提供具有不同保证的多时间算法。我们在实际数据集上评估了一些算法和几种标准聚类方法。
translated by 谷歌翻译
即使机器学习算法已经在数据科学中发挥了重要作用,但许多当前方法对输入数据提出了不现实的假设。由于不兼容的数据格式,或数据集中的异质,分层或完全缺少的数据片段,因此很难应用此类方法。作为解决方案,我们提出了一个用于样本表示,模型定义和培训的多功能,统一的框架,称为“ Hmill”。我们深入审查框架构建和扩展的机器学习的多个范围范式。从理论上讲,为HMILL的关键组件的设计合理,我们将通用近似定理的扩展显示到框架中实现的模型所实现的所有功能的集合。本文还包含有关我们实施中技术和绩效改进的详细讨论,该讨论将在MIT许可下发布供下载。该框架的主要资产是其灵活性,它可以通过相同的工具对不同的现实世界数据源进行建模。除了单独观察到每个对象的一组属性的标准设置外,我们解释了如何在框架中实现表示整个对象系统的图表中的消息推断。为了支持我们的主张,我们使用框架解决了网络安全域的三个不同问题。第一种用例涉及来自原始网络观察结果的IoT设备识别。在第二个问题中,我们研究了如何使用以有向图表示的操作系统的快照可以对恶意二进制文件进行分类。最后提供的示例是通过网络中实体之间建模域黑名单扩展的任务。在所有三个问题中,基于建议的框架的解决方案可实现与专业方法相当的性能。
translated by 谷歌翻译
聚类是一种无监督的机器学习方法,其中未标记的元素/对象被分组在一起,旨在构建成熟的群集,以根据其相似性对其元素进行分类。该过程的目的是向研究人员提供有用的帮助,以帮助她/他确定数据中的模式。在处理大型数据库时,如果没有聚类算法的贡献,这种模式可能无法轻易检测到。本文对最广泛使用的聚类方法进行了深入的描述,并伴随着有关合适的参数选择和初始化的有用演示。同时,本文不仅代表了一篇评论,该评论突出了所检查的聚类技术的主要要素,而且强调了这些算法基于3个数据集的聚类效率的比较,从而在对抗性和复杂性中揭示了其现有的弱点和能力,在持续的离散和持续的离散和离散和持续的差异。观察。产生的结果有助于我们根据数据集的大小提取有关检查聚类技术的适当性的宝贵结论。
translated by 谷歌翻译
腔是总结数据的最受欢迎的范例之一。特别是,存在许多用于聚类问题的高性能核心,例如理论和实践中的$ k $ - 均值。奇怪的是,没有进行比较可用$ k $ - 均值核心的质量的工作。在本文中,我们进行了这样的评估。目前尚无算法来测量候选核心的失真。我们提供了一些证据,表明为什么这可能在计算上很难。为了补充这一点,我们提出了一个基准,我们认为计算核心具有挑战性,这也使我们对核心的评估很容易(启发式)评估。使用此基准和现实世界数据集,我们对理论和实践中最常用的核心算法进行了详尽的评估。
translated by 谷歌翻译