我们的工作重点是解决公共图像数据集中数据歧管低密度区域的样本缺陷。我们利用基于扩散过程的生成模型来合成来自低密度区域的新图像。我们观察到来自扩散模型的均匀采样主要是来自数据歧管高密度区域的样品。因此,我们修改采样过程以将其引导到低密度区域,同时保持合成数据的保真度。我们严格地证明我们的过程成功地生成了来自低密度区域的新型高保真样品。我们进一步检查了生成的样品,并表明该模型不会记住低密度数据,并且确实学会了从低密度区域生成新样本。
translated by 谷歌翻译
We show that diffusion models can achieve image sample quality superior to the current state-of-the-art generative models. We achieve this on unconditional image synthesis by finding a better architecture through a series of ablations. For conditional image synthesis, we further improve sample quality with classifier guidance: a simple, compute-efficient method for trading off diversity for fidelity using gradients from a classifier. We achieve an FID of 2.97 on ImageNet 128×128, 4.59 on ImageNet 256×256, and 7.72 on ImageNet 512×512, and we match BigGAN-deep even with as few as 25 forward passes per sample, all while maintaining better coverage of the distribution. Finally, we find that classifier guidance combines well with upsampling diffusion models, further improving FID to 3.94 on ImageNet 256×256 and 3.85 on ImageNet 512×512. We release our code at https://github.com/openai/guided-diffusion.
translated by 谷歌翻译
分类器指南是一种最近引入的方法,可在有条件扩散模型的培训后进行交易模式覆盖范围和样本保真度,其精神与其他类型的生成模型中的低温采样或截断相同。分类器指南将扩散模型的得分估计与图像分类器的梯度相结合,因此需要训练与扩散模型分开的图像分类器。它还提出了一个问题,即在没有分类器的情况下是否可以执行指导。我们表明,确实可以通过没有这样的分类器的纯生成模型来执行指导:在我们所谓的无分类器指导中,我们共同训练有条件的和无条件的扩散模型,我们结合了所得的条件和无条件得分估算样本质量和多样性之间的权衡类似于使用分类器指南获得的样本质量和多样性。
translated by 谷歌翻译
发现神经网络学到的内容仍然是一个挑战。在自我监督的学习中,分类是用于评估表示是多么常见的最常见任务。但是,只依赖于这样的下游任务可以限制我们对给定输入的表示中保留的信息量的理解。在这项工作中,我们展示了使用条件扩散的生成模型(RCDM)来可视化具有自我监督模型学习的表示。我们进一步展示了这种模型的发电质量如何与最先进的生成模型相符,同时忠于用作调节的代表性。通过使用这个新工具来分析自我监督模型,我们可以在视觉上显示i)SSL(骨干)表示并不是真正不变的,以便他们训练的许多数据增强。 ii)SSL投影仪嵌入出现太不变的任务,如分类。 III)SSL表示对其输入IV的小对抗扰动更稳健),具有可用于图像操作的SSL模型的固有结构。
translated by 谷歌翻译
过去十年已经开发了各种各样的深度生成模型。然而,这些模型通常同时努力解决三个关键要求,包括:高样本质量,模式覆盖和快速采样。我们称之为这些要求所征收的挑战是生成的学习Trielemma,因为现有模型经常为他人交易其中一些。特别是,去噪扩散模型表明了令人印象深刻的样本质量和多样性,但它们昂贵的采样尚未允许它们在许多现实世界应用中应用。在本文中,我们认为这些模型中的缓慢采样基本上归因于去噪步骤中的高斯假设,这些假设仅针对小型尺寸的尺寸。为了使得具有大步骤的去噪,从而减少去噪步骤的总数,我们建议使用复杂的多模态分布来模拟去噪分布。我们引入了去噪扩散生成的对抗网络(去噪扩散GANS),其使用多模式条件GaN模拟每个去噪步骤。通过广泛的评估,我们表明去噪扩散GAN获得原始扩散模型的样本质量和多样性,而在CIFAR-10数据集中是2000 $ \时代。与传统的GAN相比,我们的模型表现出更好的模式覆盖和样本多样性。据我们所知,去噪扩散GaN是第一模型,可在扩散模型中降低采样成本,以便允许它们廉价地应用于现实世界应用。项目页面和代码:https://nvlabs.github.io/denoising-diffusion-gan
translated by 谷歌翻译
利用深度学习的最新进展,文本到图像生成模型目前具有吸引公众关注的优点。其中两个模型Dall-E 2和Imagen已经证明,可以从图像的简单文本描述中生成高度逼真的图像。基于一种称为扩散模型的新型图像生成方法,文本对图像模型可以生产许多不同类型的高分辨率图像,其中人类想象力是唯一的极限。但是,这些模型需要大量的计算资源来训练,并处理从互联网收集的大量数据集。此外,代码库和模型均未发布。因此,它可以防止AI社区尝试这些尖端模型,从而使其结果复制变得复杂,即使不是不可能。在本文中,我们的目标是首先回顾这些模型使用的不同方法和技术,然后提出我们自己的文本模型模型实施。高度基于DALL-E 2,我们引入了一些轻微的修改,以应对所引起的高计算成本。因此,我们有机会进行实验,以了解这些模型的能力,尤其是在低资源制度中。特别是,我们提供了比Dall-e 2的作者(包括消融研究)更深入的分析。此外,扩散模型使用所谓的指导方法来帮助生成过程。我们引入了一种新的指导方法,该方法可以与其他指导方法一起使用,以提高图像质量。最后,我们的模型产生的图像质量相当好,而不必维持最先进的文本对图像模型的重大培训成本。
translated by 谷歌翻译
降级扩散概率模型(DDPM)是最近获得最新结果的生成模型系列。为了获得类条件生成,建议通过从时间依赖性分类器中梯度指导扩散过程。尽管这个想法在理论上是合理的,但基于深度学习的分类器臭名昭著地容易受到基于梯度的对抗攻击的影响。因此,尽管传统分类器可能会达到良好的精度分数,但它们的梯度可能不可靠,并可能阻碍了生成结果的改善。最近的工作发现,对抗性稳健的分类器表现出与人类感知一致的梯度,这些梯度可以更好地指导生成过程,以实现语义有意义的图像。我们通过定义和训练时间依赖性的对抗性分类器来利用这一观察结果,并将其用作生成扩散模型的指导。在有关高度挑战性和多样化的Imagenet数据集的实验中,我们的方案引入了更明显的中间梯度,更好地与理论发现的一致性以及在几个评估指标下的改进的生成结果。此外,我们进行了一项意见调查,其发现表明人类评估者更喜欢我们的方法的结果。
translated by 谷歌翻译
虽然扩散概率模型可以产生高质量的图像内容,但仍然存在高分辨率图像的关键限制及其相关的高计算要求。最近的矢量量化图像模型已经克服了图像分辨率的这种限制,而是通过从之前的元素 - 明智的自回归采样生成令牌时,这是对图像分辨率的速度和单向的。相比之下,在本文中,我们提出了一种新的离散扩散概率模型,其通过使用无约束的变压器架构作为骨干来支持矢量量化令牌的并行预测。在培训期间,令牌以订单不可知的方式随机掩盖,变压器学会预测原始令牌。这种矢量量化令牌预测的并行性反过来促进了在计算费用的一小部分下的全球一致的高分辨率和多样性图像的无条件生成。以这种方式,我们可以产生超过原始训练集样本的图像分辨率,而另外提供每个图像似然估计(从生成的对抗方法的差点)。我们的方法在密度方面实现了最先进的结果(Lsun卧室:1.51; Lsun Churches:1.12; FFHQ:1.20)和覆盖范围(Lsun卧室:0.83; Lsun Churches:0.73; FFHQ:0.80),并执行竞争对手(LSUN卧室:3.64; LSUN教堂:4.07; FFHQ:6.11)在计算和减少训练套件要求方面提供优势。
translated by 谷歌翻译
DeNoising扩散模型代表了计算机视觉中最新的主题,在生成建模领域表现出了显着的结果。扩散模型是一个基于两个阶段的深层生成模型,一个正向扩散阶段和反向扩散阶段。在正向扩散阶段,通过添加高斯噪声,输入数据在几个步骤中逐渐受到干扰。在反向阶段,模型的任务是通过学习逐步逆转扩散过程来恢复原始输入数据。尽管已知的计算负担,即由于采样过程中涉及的步骤数量,扩散模型对生成样品的质量和多样性得到了广泛赞赏。在这项调查中,我们对视觉中应用的denoising扩散模型的文章进行了全面综述,包括该领域的理论和实际贡献。首先,我们识别并介绍了三个通用扩散建模框架,这些框架基于扩散概率模型,噪声调节得分网络和随机微分方程。我们进一步讨论了扩散模型与其他深层生成模型之间的关系,包括变异自动编码器,生成对抗网络,基于能量的模型,自回归模型和正常流量。然后,我们介绍了计算机视觉中应用的扩散模型的多角度分类。最后,我们说明了扩散模型的当前局限性,并设想了一些有趣的未来研究方向。
translated by 谷歌翻译
我们表明,级联扩散模型能够在类条件的想象生成基准上生成高保真图像,而无需辅助图像分类器的任何帮助来提高样品质量。级联的扩散模型包括多个扩散模型的流水线,其产生越来越多的分辨率,以最低分辨率的标准扩散模型开始,然后是一个或多个超分辨率扩散模型,其连续上追随图像并添加更高的分辨率细节。我们发现级联管道的样本质量至关重要的是调节增强,我们提出的数据增强较低分辨率调节输入到超级分辨率模型的方法。我们的实验表明,调节增强防止在级联模型中采样过程中的复合误差,帮助我们在256×256分辨率下,在128x128和4.88,优于63.02的分类精度分数,培训级联管道。 %(TOP-1)和84.06%(TOP-5)在256x256,优于VQ-VAE-2。
translated by 谷歌翻译
病理学家对患病组织的视觉微观研究一直是一个多世纪以来癌症诊断和预后的基石。最近,深度学习方法在组织图像的分析和分类方面取得了重大进步。但是,关于此类模型在生成组织病理学图像的实用性方面的工作有限。这些合成图像在病理学中有多种应用,包括教育,熟练程度测试,隐私和数据共享的公用事业。最近,引入了扩散概率模型以生成高质量的图像。在这里,我们首次研究了此类模型的潜在用途以及优先的形态加权和颜色归一化,以合成脑癌的高质量组织病理学图像。我们的详细结果表明,与生成对抗网络相比,扩散概率模型能够合成各种组织病理学图像,并且具有较高的性能。
translated by 谷歌翻译
The ability to automatically estimate the quality and coverage of the samples produced by a generative model is a vital requirement for driving algorithm research. We present an evaluation metric that can separately and reliably measure both of these aspects in image generation tasks by forming explicit, non-parametric representations of the manifolds of real and generated data. We demonstrate the effectiveness of our metric in StyleGAN and BigGAN by providing several illustrative examples where existing metrics yield uninformative or contradictory results. Furthermore, we analyze multiple design variants of StyleGAN to better understand the relationships between the model architecture, training methods, and the properties of the resulting sample distribution. In the process, we identify new variants that improve the state-of-the-art. We also perform the first principled analysis of truncation methods and identify an improved method. Finally, we extend our metric to estimate the perceptual quality of individual samples, and use this to study latent space interpolations.
translated by 谷歌翻译
Diffusion models have achieved great success in modeling continuous data modalities such as images, audio, and video, but have seen limited use in discrete domains such as language. Recent attempts to adapt diffusion to language have presented diffusion as an alternative to autoregressive language generation. We instead view diffusion as a complementary method that can augment the generative capabilities of existing pre-trained language models. We demonstrate that continuous diffusion models can be learned in the latent space of a pre-trained encoder-decoder model, enabling us to sample continuous latent representations that can be decoded into natural language with the pre-trained decoder. We show that our latent diffusion models are more effective at sampling novel text from data distributions than a strong autoregressive baseline and also enable controllable generation.
translated by 谷歌翻译
We explore a new class of diffusion models based on the transformer architecture. We train latent diffusion models of images, replacing the commonly-used U-Net backbone with a transformer that operates on latent patches. We analyze the scalability of our Diffusion Transformers (DiTs) through the lens of forward pass complexity as measured by Gflops. We find that DiTs with higher Gflops -- through increased transformer depth/width or increased number of input tokens -- consistently have lower FID. In addition to possessing good scalability properties, our largest DiT-XL/2 models outperform all prior diffusion models on the class-conditional ImageNet 512x512 and 256x256 benchmarks, achieving a state-of-the-art FID of 2.27 on the latter.
translated by 谷歌翻译
Denoising diffusion probabilistic models (DDPM) are a class of generative models which have recently been shown to produce excellent samples. We show that with a few simple modifications, DDPMs can also achieve competitive loglikelihoods while maintaining high sample quality. Additionally, we find that learning variances of the reverse diffusion process allows sampling with an order of magnitude fewer forward passes with a negligible difference in sample quality, which is important for the practical deployment of these models. We additionally use precision and recall to compare how well DDPMs and GANs cover the target distribution. Finally, we show that the sample quality and likelihood of these models scale smoothly with model capacity and training compute, making them easily scalable. We release our code at https://github.com/ openai/improved-diffusion.
translated by 谷歌翻译
Can continuous diffusion models bring the same performance breakthrough on natural language they did for image generation? To circumvent the discrete nature of text data, we can simply project tokens in a continuous space of embeddings, as is standard in language modeling. We propose Self-conditioned Embedding Diffusion, a continuous diffusion mechanism that operates on token embeddings and allows to learn flexible and scalable diffusion models for both conditional and unconditional text generation. Through qualitative and quantitative evaluation, we show that our text diffusion models generate samples comparable with those produced by standard autoregressive language models - while being in theory more efficient on accelerator hardware at inference time. Our work paves the way for scaling up diffusion models for text, similarly to autoregressive models, and for improving performance with recent refinements to continuous diffusion.
translated by 谷歌翻译
考虑到其协变量$ \ boldsymbol x $的连续或分类响应变量$ \ boldsymbol y $的分布是统计和机器学习中的基本问题。深度神经网络的监督学习算法在预测给定$ \ boldsymbol x $的$ \ boldsymbol y $的平均值方面取得了重大进展,但是他们经常因其准确捕捉预测的不确定性的能力而受到批评。在本文中,我们引入了分类和回归扩散(卡)模型,该模型结合了基于扩散的条件生成模型和预训练的条件估计器,以准确预测给定$ \ boldsymbol y $的分布,给定$ \ boldsymbol x $。我们证明了通过玩具示例和现实世界数据集的有条件分配预测的卡片的出色能力,实验结果表明,一般的卡在一般情况下都优于最先进的方法,包括基于贝叶斯的神经网络的方法专为不确定性估计而设计,尤其是当给定$ \ boldsymbol y $的条件分布给定的$ \ boldsymbol x $是多模式时。
translated by 谷歌翻译
扩散概率模型采用前向马尔可夫扩散链逐渐将数据映射到噪声分布,学习如何通过推断一个反向马尔可夫扩散链来生成数据以颠倒正向扩散过程。为了实现竞争性数据生成性能,他们需要一条长长的扩散链,这使它们在培训中不仅在培训中而且发电。为了显着提高计算效率,我们建议通过废除将数据扩散到随机噪声的要求来截断正向扩散链。因此,我们从隐式生成分布而不是随机噪声启动逆扩散链,并通过将其与截断的正向扩散链损坏的数据的分布相匹配来学习其参数。实验结果表明,就发电性能和所需的逆扩散步骤的数量而言,我们的截短扩散概率模型对未截断的概率模型提供了一致的改进。
translated by 谷歌翻译
Diffusion models have quickly become the go-to paradigm for generative modelling of perceptual signals (such as images and sound) through iterative refinement. Their success hinges on the fact that the underlying physical phenomena are continuous. For inherently discrete and categorical data such as language, various diffusion-inspired alternatives have been proposed. However, the continuous nature of diffusion models conveys many benefits, and in this work we endeavour to preserve it. We propose CDCD, a framework for modelling categorical data with diffusion models that are continuous both in time and input space. We demonstrate its efficacy on several language modelling tasks.
translated by 谷歌翻译
Denoising diffusion (score-based) generative models have recently achieved significant accomplishments in generating realistic and diverse data. These approaches define a forward diffusion process for transforming data into noise and a backward denoising process for sampling data from noise. Unfortunately, the generation process of current denoising diffusion models is notoriously slow due to the lengthy iterative noise estimations, which rely on cumbersome neural networks. It prevents the diffusion models from being widely deployed, especially on edge devices. Previous works accelerate the generation process of diffusion model (DM) via finding shorter yet effective sampling trajectories. However, they overlook the cost of noise estimation with a heavy network in every iteration. In this work, we accelerate generation from the perspective of compressing the noise estimation network. Due to the difficulty of retraining DMs, we exclude mainstream training-aware compression paradigms and introduce post-training quantization (PTQ) into DM acceleration. However, the output distributions of noise estimation networks change with time-step, making previous PTQ methods fail in DMs since they are designed for single-time step scenarios. To devise a DM-specific PTQ method, we explore PTQ on DM in three aspects: quantized operations, calibration dataset, and calibration metric. We summarize and use several observations derived from all-inclusive investigations to formulate our method, which especially targets the unique multi-time-step structure of DMs. Experimentally, our method can directly quantize full-precision DMs into 8-bit models while maintaining or even improving their performance in a training-free manner. Importantly, our method can serve as a plug-and-play module on other fast-sampling methods, e.g., DDIM.
translated by 谷歌翻译