大规模的农作物类型分类是遥感工作的核心,具有经济和生态重要性的应用。当前的最新深度学习方法基于自我注意事项,并使用卫星图像时间序列(SITS)根据其独特的生长模式来区分作物类型。但是,现有方法概括地概括了训练期间未见的区域,这主要是因为由于气候变化而导致生长季节的时间变化不健全。为此,我们建议针对基于注意的农作物分类器的热位置编码(TPE)。与以前的位置编码基于日历时间(例如年度)不同,TPE是基于热时间,这是通过在整个生长季节积累每日平均温度来获得的。由于农作物的生长与热时间直接相关,但与日历时间无关,因此TPE解决了不同区域之间的时间变化以改善概括。我们提出了多种TPE策略,包括可学习的方法,以进一步改善与常见的固定位置编码相比。我们证明了我们在四个不同欧洲地区的农作物分类任务上的方法,在那里我们获得了最新的概括结果。
translated by 谷歌翻译
深度学习模型的最新发展,捕捉作物物候的复杂的时间模式有卫星图像时间序列(坐在),大大高级作物分类。然而,当施加到目标区域从训练区空间上不同的,这些模型差没有任何目标标签由于作物物候区域之间的时间位移进行。为了解决这个无人监督跨区域适应环境,现有方法学域不变特征没有任何目标的监督,而不是时间偏移本身。因此,这些技术提供了SITS只有有限的好处。在本文中,我们提出TimeMatch,一种新的无监督领域适应性方法SITS直接占时移。 TimeMatch由两个部分组成:1)时间位移的估计,其估计具有源极训练模型的未标记的目标区域的时间偏移,和2)TimeMatch学习,它结合了时间位移估计与半监督学习到一个分类适应未标记的目标区域。我们还引进了跨区域适应的开放式访问的数据集与来自欧洲四个不同区域的旁边。在此数据集,我们证明了TimeMatch优于所有竞争的方法,通过11%的在五个不同的适应情景F1-得分,创下了新的国家的最先进的跨区域适应性。
translated by 谷歌翻译
注意力机制是秩序不变的。位置编码是一个重要组成部分,以允许基于关注的深层模型架构,例如变压器来解决信息问题的序列或图像。在本文中,我们提出了一种基于学习傅里叶特征的新型位置编码方法。而不是将每个位置硬编码为令牌或向量,而是表示可以是多维的每个位置,作为基于被动傅里叶特征映射的可训练编码,用多层的傅立刻调制。表示对于空间多维位置,例如,在图像上的像素位置,其中需要捕获$ L_2 $距离或更复杂的位置关系。我们基于几个公共基准任务的实验表明,我们的学习傅里叶特征表示,用于多维位置编码的多维位置编码通过提高准确度并允许更快的收敛来实现现有方法。
translated by 谷歌翻译
从自然语言嵌入中汲取灵感,我们提出了Astromer,这是一种基于变压器的模型,以创建光曲线的表示。Astromer接受了数以百万计的Macho R波段样品的培训,并且很容易对其进行微调以匹配与下游任务相关的特定域。例如,本文显示了使用预训练的表示形式对变量恒星进行分类的好处。此外,我们还提供了一个Python库,其中包括这项工作中使用的所有功能。我们的图书馆包括预先培训的模型,可用于增强深度学习模型的性能,减少计算资源,同时获得最新的结果。
translated by 谷歌翻译
Climate change is expected to intensify and increase extreme events in the weather cycle. Since this has a significant impact on various sectors of our life, recent works are concerned with identifying and predicting such extreme events from Earth observations. This paper proposes a 2D/3D two-branch convolutional neural network (CNN) for wildfire danger forecasting. To use a unified framework, previous approaches duplicate static variables along the time dimension and neglect the intrinsic differences between static and dynamic variables. Furthermore, most existing multi-branch architectures lose the interconnections between the branches during the feature learning stage. To address these issues, we propose a two-branch architecture with a Location-aware Adaptive Denormalization layer (LOADE). Using LOADE as a building block, we can modulate the dynamic features conditional on their geographical location. Thus, our approach considers feature properties as a unified yet compound 2D/3D model. Besides, we propose using an absolute temporal encoding for time-related forecasting problems. Our experimental results show a better performance of our approach than other baselines on the challenging FireCube dataset.
translated by 谷歌翻译
Future surveys such as the Legacy Survey of Space and Time (LSST) of the Vera C. Rubin Observatory will observe an order of magnitude more astrophysical transient events than any previous survey before. With this deluge of photometric data, it will be impossible for all such events to be classified by humans alone. Recent efforts have sought to leverage machine learning methods to tackle the challenge of astronomical transient classification, with ever improving success. Transformers are a recently developed deep learning architecture, first proposed for natural language processing, that have shown a great deal of recent success. In this work we develop a new transformer architecture, which uses multi-head self attention at its core, for general multi-variate time-series data. Furthermore, the proposed time-series transformer architecture supports the inclusion of an arbitrary number of additional features, while also offering interpretability. We apply the time-series transformer to the task of photometric classification, minimising the reliance of expert domain knowledge for feature selection, while achieving results comparable to state-of-the-art photometric classification methods. We achieve a logarithmic-loss of 0.507 on imbalanced data in a representative setting using data from the Photometric LSST Astronomical Time-Series Classification Challenge (PLAsTiCC). Moreover, we achieve a micro-averaged receiver operating characteristic area under curve of 0.98 and micro-averaged precision-recall area under curve of 0.87.
translated by 谷歌翻译
在本文中,我们提出了一种基于对比学习的完全监督的预培训方案,特别针对密集的分类任务。所提出的上下文 - 自我对比损失(CSCL)了解嵌入空间,通过在训练样本中的每个位置与其本地上下文之间使用相似性度量来弹出语义边界。对于从卫星图像时间序列(坐)的作物类型语义分割我们在宗地边界中发现性能是一个关键的瓶颈,并解释CSCL如何解决该问题的潜在原因,从而提高本任务中的最先进的性能。此外,我们使用来自Sentinel-2(S2)卫星任务的图像,我们编写了我们的知识,坐在裁剪类型和包裹身份密集地注释的数据集,我们将与数据生成管道一起公开使用。使用我们发现CSCL的数据,即使具有最小的预训练,以改善所有相应的基线,并且在超级分辨率下提出语义分割的过程,以获得更粒度的茶几。下载数据的代码和说明可以在https://github.com/michaeltrs/deepsatmodels中找到。
translated by 谷歌翻译
没有位置信息,基于关注的变压器神经网络是置换不变的。绝对或相对位置嵌入是使用位置信息提供变压器模型的最流行的方式。绝对位置嵌入式易于实施,但是当在比训练时间更长的序列进行评估时遭受泛化问题。对于输入长度变化,相对位置更加稳健,但由于额外的计算和内存成本,实现和产生较差的模型吞吐量更复杂。在本文中,我们提出了一种基于增强的方法(CAPE),用于绝对位置嵌入物,其保持绝对(简单和速度)和相对位置嵌入(更好的泛化)的优点。此外,我们对机器翻译,图像和语音识别的最先进模型的实证评估表明,CAPE导致更好的泛化性能以及对培训超参数的稳定性增加。
translated by 谷歌翻译
大型视力模型的无监督预训练方法已显示出可以提高下游监督任务的性能。为卫星图像开发类似的技术带来了重要的机会,因为未标记的数据很丰富,并且固有的时间和多光谱结构提供了途径,以进一步改善现有的训练策略。在本文中,我们提出了Satmae,这是基于蒙面自动编码器(MAE)的时间或多光谱卫星图像的预训练框架。为了利用时间信息,我们包括一个时间嵌入以及跨时间独立掩盖图像贴片。此外,我们证明将多光谱数据编码为具有不同光谱位置编码的频段组是有益的。我们的方法在基准数据集(最高$ \ uparrow $ 7 \%)上的监督学习绩效方面都对先前最先前的技术产生了强大的改进,以及在下游遥感任务(包括土地)上的转移学习绩效封面分类(最多$ \ uparrow $ 14 \%)和语义细分。
translated by 谷歌翻译
Learning object-centric representations of complex scenes is a promising step towards enabling efficient abstract reasoning from low-level perceptual features. Yet, most deep learning approaches learn distributed representations that do not capture the compositional properties of natural scenes. In this paper, we present the Slot Attention module, an architectural component that interfaces with perceptual representations such as the output of a convolutional neural network and produces a set of task-dependent abstract representations which we call slots. These slots are exchangeable and can bind to any object in the input by specializing through a competitive procedure over multiple rounds of attention. We empirically demonstrate that Slot Attention can extract object-centric representations that enable generalization to unseen compositions when trained on unsupervised object discovery and supervised property prediction tasks.
translated by 谷歌翻译
While the Transformer architecture has become the de-facto standard for natural language processing tasks, its applications to computer vision remain limited. In vision, attention is either applied in conjunction with convolutional networks, or used to replace certain components of convolutional networks while keeping their overall structure in place. We show that this reliance on CNNs is not necessary and a pure transformer applied directly to sequences of image patches can perform very well on image classification tasks. When pre-trained on large amounts of data and transferred to multiple mid-sized or small image recognition benchmarks (ImageNet, CIFAR-100, VTAB, etc.), Vision Transformer (ViT) attains excellent results compared to state-of-the-art convolutional networks while requiring substantially fewer computational resources to train. 1
translated by 谷歌翻译
高分辨率图像和详尽的局部注释成本的过高成本阻碍了数字病理学的进展。用于对病理图像进行分类的常用范式是基于贴片的处理,该处理通常结合了多个实例学习(MIL)以汇总局部补丁级表示,从而得出图像级预测。尽管如此,诊断相关的区域只能占整个组织的一小部分,而当前基于MIL的方法通常会均匀地处理图像,从而丢弃相互作用的相互作用。为了减轻这些问题,我们提出了Scorenet,Scorenet是一种新的有效的变压器,利用可区分的建议阶段来提取区分图像区域并相应地专用计算资源。提出的变压器利用一些动态推荐的高分辨率区域的本地和全球关注,以有效的计算成本。我们通过利用图像的语义分布来指导数据混合并产生连贯的样品标签对,进一步介绍了一种新型的混合数据启发,即SCOREX。 SCOREMIX令人尴尬地简单,并减轻了先前的增强的陷阱,该增强性的陷阱假设了统一的语义分布,并冒着标签样品的风险。对血久毒素和曙红(H&E)的三个乳腺癌组织学数据集(H&E)的三个乳腺癌组织学数据集(H&E)的彻底实验和消融研究验证了我们的方法优于先前的艺术,包括基于变压器的肿瘤区域(TORIS)分类的模型。与其他混合增强变体相比,配备了拟议的得分增强的Scorenet表现出更好的概括能力,并实现了新的最先进的结果(SOTA)结果,仅50%的数据。最后,Scorenet产生了高疗效,并且胜过SOTA有效变压器,即TransPath和SwintransFormer。
translated by 谷歌翻译
最近,对于长期时间序列预测(LTSF)任务,基于变压器的解决方案激增。尽管过去几年的表现正在增长,但我们质疑这项研究中这一研究的有效性。具体而言,可以说,变形金刚是最成功的解决方案,是在长序列中提取元素之间的语义相关性。但是,在时间序列建模中,我们要在一组连续点的有序集中提取时间关系。在采用位置编码和使用令牌将子系列嵌入变压器中的同时,有助于保留某些订购信息,但\ emph {置换不变}的自我注意力专注机制的性质不可避免地会导致时间信息损失。为了验证我们的主张,我们介绍了一组名为LTSF线性的令人尴尬的简单单层线性模型,以进行比较。在九个现实生活数据集上的实验结果表明,LTSF线性在所有情况下都超过现有的基于变压器的LTSF模型,并且通常要大幅度较大。此外,我们进行了全面的经验研究,以探索LTSF模型各种设计元素对其时间关系提取能力的影响。我们希望这一令人惊讶的发现为LTSF任务打开了新的研究方向。我们还主张重新审视基于变压器解决方案对其他时间序列分析任务(例如,异常检测)的有效性。代码可在:\ url {https://github.com/cure-lab/ltsf-linear}中获得。
translated by 谷歌翻译
基于变压器模型架构的最近深入学习研究在各种域和任务中展示了最先进的性能,主要是在计算机视觉和自然语言处理域中。虽然最近的一些研究已经实施了使用电子健康记录数据的临床任务的变压器,但它们的范围,灵活性和全面性有限。在本研究中,我们提出了一种灵活的基于变换器的EHR嵌入管道和预测模型框架,它引入了利用了医疗域唯一的数据属性的现有工作流程的几个新颖修改。我们展示了灵活设计的可行性,在重症监护病房的案例研究中,我们的模型准确地预测了七种临床结果,这些临床结果与多个未来的时间范围有关的入院和患者死亡率。
translated by 谷歌翻译
哥内克人Sentinel Imagery的纯粹卷的可用性为使用深度学习的大尺度创造了新的土地利用陆地覆盖(Lulc)映射的机会。虽然在这种大型数据集上培训是一个非琐碎的任务。在这项工作中,我们试验Lulc Image分类和基准不同最先进模型的Bigearthnet数据集,包括卷积神经网络,多层感知,视觉变压器,高效导通和宽残余网络(WRN)架构。我们的目标是利用分类准确性,培训时间和推理率。我们提出了一种基于用于网络深度,宽度和输入数据分辨率的WRNS复合缩放的高效导通的框架,以有效地训练和测试不同的模型设置。我们设计一种新颖的缩放WRN架构,增强了有效的通道注意力机制。我们提出的轻量级模型具有较小的培训参数,实现所有19个LULC类的平均F分类准确度达到4.5%,并且验证了我们使用的resnet50最先进的模型速度快两倍作为基线。我们提供超过50种培训的型号,以及我们在多个GPU节点上分布式培训的代码。
translated by 谷歌翻译
Biological systems perceive the world by simultaneously processing high-dimensional inputs from modalities as diverse as vision, audition, touch, proprioception, etc. The perception models used in deep learning on the other hand are designed for individual modalities, often relying on domainspecific assumptions such as the local grid structures exploited by virtually all existing vision models. These priors introduce helpful inductive biases, but also lock models to individual modalities. In this paper we introduce the Perceiver -a model that builds upon Transformers and hence makes few architectural assumptions about the relationship between its inputs, but that also scales to hundreds of thousands of inputs, like ConvNets. The model leverages an asymmetric attention mechanism to iteratively distill inputs into a tight latent bottleneck, allowing it to scale to handle very large inputs. We show that this architecture is competitive with or outperforms strong, specialized models on classification tasks across various modalities: images, point clouds, audio, video, and video+audio. The Perceiver obtains performance comparable to ResNet-50 and ViT on ImageNet without 2D convolutions by directly attending to 50,000 pixels. It is also competitive in all modalities in AudioSet.
translated by 谷歌翻译
前所未有的访问多时间卫星图像,为各种地球观察任务开辟了新的视角。其中,农业包裹的像素精确的Panoptic分割具有重大的经济和环境影响。虽然研究人员对单张图像进行了探索了这个问题,但我们争辩说,随着图像的时间序列更好地寻址作物候选的复杂时间模式。在本文中,我们介绍了卫星图像时间序列(坐着)的Panoptic分割的第一端到端,单级方法(坐姿)。该模块可以与我们的新型图像序列编码网络相结合,依赖于时间自我关注,以提取丰富和自适应的多尺度时空特征。我们还介绍了Pastis,第一个开放式访问坐在Panoptic注释的数据集。我们展示了对多个竞争架构的语义细分的编码器的优越性,并建立了坐在的第一封Panoptic细分状态。我们的实施和痛苦是公开的。
translated by 谷歌翻译
我用Hunglish2语料库训练神经电脑翻译任务的模型。这项工作的主要贡献在培训NMT模型期间评估不同的数据增强方法。我提出了5种不同的增强方法,这些方法是结构感知的,这意味着而不是随机选择用于消隐或替换的单词,句子的依赖树用作增强的基础。我首先关于神经网络的详细文献综述,顺序建模,神经机翻译,依赖解析和数据增强。经过详细的探索性数据分析和Hunglish2语料库的预处理之后,我使用所提出的数据增强技术进行实验。匈牙利语的最佳型号达到了33.9的BLEU得分,而英国匈牙利最好的模型达到了28.6的BLEU得分。
translated by 谷歌翻译
冠状病毒疾病或Covid-19是由SARS-COV-2病毒引起的一种传染病。该病毒引起的第一个确认病例是在2019年12月底在中国武汉市发现的。然后,此案遍布全球,包括印度尼西亚。因此,联合19案被WHO指定为全球大流行。可以使用多种方法(例如深神经网络(DNN))预测COVID-19病例的增长,尤其是在印度尼西亚。可以使用的DNN模型之一是可以预测时间序列的深变压器。该模型经过多种测试方案的培训,以获取最佳模型。评估是找到最佳的超参数。然后,使用预测天数,优化器,功能数量以及与长期短期记忆(LSTM)(LSTM)和复发性神经网络(RNN)的先前模型进行比较的最佳超参数设置进行了进一步的评估。 。所有评估均使用平均绝对百分比误差(MAPE)的度量。基于评估的结果,深层变压器在使用前层归一化时会产生最佳的结果,并预测有一天的MAPE值为18.83。此外,接受Adamax优化器训练的模型在其他测试优化器中获得了最佳性能。 Deep Transformer的性能还超过了其他测试模型,即LSTM和RNN。
translated by 谷歌翻译
Attention-based neural networks, such as Transformers, have become ubiquitous in numerous applications, including computer vision, natural language processing, and time-series analysis. In all kinds of attention networks, the attention maps are crucial as they encode semantic dependencies between input tokens. However, most existing attention networks perform modeling or reasoning based on representations, wherein the attention maps of different layers are learned separately without explicit interactions. In this paper, we propose a novel and generic evolving attention mechanism, which directly models the evolution of inter-token relationships through a chain of residual convolutional modules. The major motivations are twofold. On the one hand, the attention maps in different layers share transferable knowledge, thus adding a residual connection can facilitate the information flow of inter-token relationships across layers. On the other hand, there is naturally an evolutionary trend among attention maps at different abstraction levels, so it is beneficial to exploit a dedicated convolution-based module to capture this process. Equipped with the proposed mechanism, the convolution-enhanced evolving attention networks achieve superior performance in various applications, including time-series representation, natural language understanding, machine translation, and image classification. Especially on time-series representation tasks, Evolving Attention-enhanced Dilated Convolutional (EA-DC-) Transformer outperforms state-of-the-art models significantly, achieving an average of 17% improvement compared to the best SOTA. To the best of our knowledge, this is the first work that explicitly models the layer-wise evolution of attention maps. Our implementation is available at https://github.com/pkuyym/EvolvingAttention
translated by 谷歌翻译