目的:尽管机器学习模型有潜力,但缺乏普遍性阻碍了他们在临床实践中的广泛采用。我们研究了三个方法论陷阱:(1)违反独立性假设,(2)具有不适当的性能指标或基线进行比较的模型评估,以及(3)批次效应。材料和方法:使用几个回顾性数据集,我们在有或没有陷阱的情况下实现机器学习模型,以定量说明这些陷阱对模型通用性的影响。结果:更具体地说,违反独立假设,在将数据分别分为火车,验证和测试集中,在预测局部恢复和预测局部恢复和表面上,将数据分别划分为火车,验证和测试集,在将数据分别分为火车,验证和测试集中,在F1分别误导和表面上获得误解和表面收益,从而违反独立假设。预测头颈癌的3年总生存期以及46.0%的总体生存率为5.0%,从而区分肺癌的组织病理学模式。此外,在培训,验证和测试集中为受试者分发数据点导致F1分数的表面增长21.8%。此外,我们展示了绩效指标选择和基线的重要性。在存在批处理效应的情况下,为肺炎检测而建立的模型导致F1得分为98.7%。但是,当将同一模型应用于正常患者的新数据集时,仅正确地将3.86%的样品分类。结论:这些方法上的陷阱无法使用内部模型评估来捕获,这种模型的不准确预测可能会导致错误的结论和解释。因此,对于开发可推广的模型是必要的,理解和避免这些陷阱是必要的。
translated by 谷歌翻译
人工智能(AI)技术具有重要潜力,可以实现有效,鲁棒和自动的图像表型,包括识别细微图案。基于AI的检测搜索图像空间基于模式和特征来找到兴趣区域。存在一种良性的肿瘤组织学,可以通过使用图像特征的基于AI的分类方法来识别。图像从图像中提取可用于的可覆盖方式,可以通过显式(手工/工程化)和深度辐射谱系框架来探索途径。辐射瘤分析有可能用作非侵入性技术,以准确表征肿瘤,以改善诊断和治疗监测。这项工作介绍基于AI的技术,专注于肿瘤宠物和PET / CT成像,用于不同的检测,分类和预测/预测任务。我们还讨论了所需的努力,使AI技术转换为常规临床工作流程,以及潜在的改进和互补技术,例如在电子健康记录和神经象征性AI技术上使用自然语言处理。
translated by 谷歌翻译
Computer tomography (CT) have been routinely used for the diagnosis of lung diseases and recently, during the pandemic, for detecting the infectivity and severity of COVID-19 disease. One of the major concerns in using ma-chine learning (ML) approaches for automatic processing of CT scan images in clinical setting is that these methods are trained on limited and biased sub-sets of publicly available COVID-19 data. This has raised concerns regarding the generalizability of these models on external datasets, not seen by the model during training. To address some of these issues, in this work CT scan images from confirmed COVID-19 data obtained from one of the largest public repositories, COVIDx CT 2A were used for training and internal vali-dation of machine learning models. For the external validation we generated Indian-COVID-19 CT dataset, an open-source repository containing 3D CT volumes and 12096 chest CT images from 288 COVID-19 patients from In-dia. Comparative performance evaluation of four state-of-the-art machine learning models, viz., a lightweight convolutional neural network (CNN), and three other CNN based deep learning (DL) models such as VGG-16, ResNet-50 and Inception-v3 in classifying CT images into three classes, viz., normal, non-covid pneumonia, and COVID-19 is carried out on these two datasets. Our analysis showed that the performance of all the models is comparable on the hold-out COVIDx CT 2A test set with 90% - 99% accuracies (96% for CNN), while on the external Indian-COVID-19 CT dataset a drop in the performance is observed for all the models (8% - 19%). The traditional ma-chine learning model, CNN performed the best on the external dataset (accu-racy 88%) in comparison to the deep learning models, indicating that a light-weight CNN is better generalizable on unseen data. The data and code are made available at https://github.com/aleesuss/c19.
translated by 谷歌翻译
2019年12月,一个名为Covid-19的新型病毒导致了迄今为止的巨大因果关系。与新的冠状病毒的战斗在西班牙语流感后令人振奋和恐怖。虽然前线医生和医学研究人员在控制高度典型病毒的传播方面取得了重大进展,但技术也证明了在战斗中的重要性。此外,许多医疗应用中已采用人工智能,以诊断许多疾病,甚至陷入困境的经验丰富的医生。因此,本调查纸探讨了提议的方法,可以提前援助医生和研究人员,廉价的疾病诊断方法。大多数发展中国家难以使用传统方式进行测试,但机器和深度学习可以采用显着的方式。另一方面,对不同类型的医学图像的访问已经激励了研究人员。结果,提出了一种庞大的技术数量。本文首先详细调了人工智能域中传统方法的背景知识。在此之后,我们会收集常用的数据集及其用例日期。此外,我们还显示了采用深入学习的机器学习的研究人员的百分比。因此,我们对这种情况进行了彻底的分析。最后,在研究挑战中,我们详细阐述了Covid-19研究中面临的问题,我们解决了我们的理解,以建立一个明亮健康的环境。
translated by 谷歌翻译
这项研究的目的是开发一个强大的基于深度学习的框架,以区分Covid-19,社区获得的肺炎(CAP)和基于使用各种方案和放射剂量在不同成像中心获得的胸部CT扫描的正常病例和正常情况。我们表明,虽然我们的建议模型是在使用特定扫描协议仅从一个成像中心获取的相对较小的数据集上训练的,但该模型在使用不同技术参数的多个扫描仪获得的异质测试集上表现良好。我们还表明,可以通过无监督的方法来更新模型,以应对火车和测试集之间的数据移动,并在从其他中心接收新的外部数据集时增强模型的鲁棒性。我们采用了合奏体系结构来汇总该模型的多个版本的预测。为了初始培训和开发目的,使用了171 Covid-19、60 CAP和76个正常情况的内部数据集,其中包含使用恒定的标准辐射剂量扫描方案从一个成像中心获得的体积CT扫描。为了评估模型,我们回顾了四个不同的测试集,以研究数据特征对模型性能的转移的影响。在测试用例中,有与火车组相似的CT扫描,以及嘈杂的低剂量和超低剂量CT扫描。此外,从患有心血管疾病或手术病史的患者中获得了一些测试CT扫描。这项研究中使用的整个测试数据集包含51 covid-19、28 CAP和51例正常情况。实验结果表明,我们提出的框架在所有测试集上的表现良好,达到96.15%的总准确度(95%CI:[91.25-98.74]),COVID-119,COVID-96.08%(95%CI:[86.54-99.5],95%),[86.54-99.5],),,),敏感性。帽敏感性为92.86%(95%CI:[76.50-99.19])。
translated by 谷歌翻译
Pneumonia, a respiratory infection brought on by bacteria or viruses, affects a large number of people, especially in developing and impoverished countries where high levels of pollution, unclean living conditions, and overcrowding are frequently observed, along with insufficient medical infrastructure. Pleural effusion, a condition in which fluids fill the lung and complicate breathing, is brought on by pneumonia. Early detection of pneumonia is essential for ensuring curative care and boosting survival rates. The approach most usually used to diagnose pneumonia is chest X-ray imaging. The purpose of this work is to develop a method for the automatic diagnosis of bacterial and viral pneumonia in digital x-ray pictures. This article first presents the authors' technique, and then gives a comprehensive report on recent developments in the field of reliable diagnosis of pneumonia. In this study, here tuned a state-of-the-art deep convolutional neural network to classify plant diseases based on images and tested its performance. Deep learning architecture is compared empirically. VGG19, ResNet with 152v2, Resnext101, Seresnet152, Mobilenettv2, and DenseNet with 201 layers are among the architectures tested. Experiment data consists of two groups, sick and healthy X-ray pictures. To take appropriate action against plant diseases as soon as possible, rapid disease identification models are preferred. DenseNet201 has shown no overfitting or performance degradation in our experiments, and its accuracy tends to increase as the number of epochs increases. Further, DenseNet201 achieves state-of-the-art performance with a significantly a smaller number of parameters and within a reasonable computing time. This architecture outperforms the competition in terms of testing accuracy, scoring 95%. Each architecture was trained using Keras, using Theano as the backend.
translated by 谷歌翻译
肺癌是全球癌症死亡的主要原因,肺腺癌是最普遍的肺癌形式。 EGFR阳性肺腺癌已被证明对TKI治疗的反应率很高,这是肺癌分子测试的基本性质。尽管目前的指南考虑必要测试,但很大一部分患者并未常规化,导致数百万的人未接受最佳治疗肺癌。测序是EGFR突变分子测试的黄金标准,但是结果可能需要数周的时间才能回来,这在时间限制的情况下并不理想。能够快速,便宜地检测EGFR突变的替代筛查工具的开发,同时保存组织以进行测序可以帮助减少受比较治疗的患者的数量。我们提出了一种多模式方法,该方法将病理图像和临床变量整合在一起,以预测EGFR突变状态,迄今为止最大的临床队列中的AUC为84%。这样的计算模型可以以很少的额外成本进行大部分部署。它的临床应用可以减少中国接受亚最佳治疗的患者数量53.1%,在美国将高达96.6%的患者减少96.6%。
translated by 谷歌翻译
最近的人工智能(AI)算法已在各种医学分类任务上实现了放射科医生级的性能。但是,只有少数研究涉及CXR扫描异常发现的定位,这对于向放射学家解释图像级分类至关重要。我们在本文中介绍了一个名为Vindr-CXR的可解释的深度学习系统,该系统可以将CXR扫描分类为多种胸部疾病,同时将大多数类型的关键发现本地化在图像上。 Vindr-CXR接受了51,485次CXR扫描的培训,并通过放射科医生提供的边界盒注释进行了培训。它表现出与经验丰富的放射科医生相当的表现,可以在3,000张CXR扫描的回顾性验证集上对6种常见的胸部疾病进行分类,而在接收器操作特征曲线(AUROC)下的平均面积为0.967(95%置信区间[CI]:0.958---------0.958------- 0.975)。 VINDR-CXR在独立患者队列中也得到了外部验证,并显示出其稳健性。对于具有14种类型病变的本地化任务,我们的自由响应接收器操作特征(FROC)分析表明,VINDR-CXR以每扫描确定的1.0假阳性病变的速率达到80.2%的敏感性。还进行了一项前瞻性研究,以衡量VINDR-CXR在协助六名经验丰富的放射科医生方面的临床影响。结果表明,当用作诊断工具时,提出的系统显着改善了放射科医生本身之间的一致性,平均Fleiss的Kappa的同意增加了1.5%。我们还观察到,在放射科医生咨询了Vindr-CXR的建议之后,在平均Cohen的Kappa中,它们和系统之间的一致性显着增加了3.3%。
translated by 谷歌翻译
计算病理(CPATH)是一种具有关于组织病理研究的新兴领域,通过计算和分析组织载玻片的数字化高分辨率图像的处理算法。CPATH最近的深度学习的发展已经成功地利用了组织学图像中的原始像素数据的纯粹体积,以预测诊断域,预测,治疗敏感性和患者分层中的目标参数 - 覆盖新数据驱动的AI时代的承诺既组织病理学和肿瘤。使用作为燃料和作为发动机的燃料和AI的数据,CPATH算法准备好用于起飞和最终发射到临床和药物轨道中。在本文中,我们讨论了CPATH限制和相关挑战,使读者能够区分HIPE的希望,并为未来的研究提供指示,以克服这个崭露头角领域的一些主要挑战,以使其发射到两个轨道上。
translated by 谷歌翻译
本文介绍了有组织的第二次共同19号比赛的基线方法,该方法发生在欧洲计算机视觉会议(ECCV 2022)的Aimia研讨会框架内。它提出了COV19-CT-DB数据库,该数据库为COVID-19 DENCTICT注释,由约7,700 3-D CT扫描组成。通过四个COVID-19严重性条件,进一步注释了由COVID-19案例组成的数据库的一部分。我们已经在培训,验证和测试数据集中划分了数据库和后期。前两个数据集用于培训和验证机器学习模型,而后者将用于评估开发模型。基线方法由基于CNN-RNN网络的深度学习方法组成,并报告其在COVID19-CT-DB数据库上的性能。
translated by 谷歌翻译
快速准确地检测该疾病可以大大帮助减少任何国家医疗机构对任何大流行期间死亡率降低死亡率的压力。这项工作的目的是使用新型的机器学习框架创建多模式系统,该框架同时使用胸部X射线(CXR)图像和临床数据来预测COVID-19患者的严重程度。此外,该研究还提出了一种基于nom图的评分技术,用于预测高危患者死亡的可能性。这项研究使用了25种生物标志物和CXR图像,以预测意大利第一波Covid-19(3月至6月2020年3月至6月)在930名Covid-19患者中的风险。提出的多模式堆叠技术分别产生了89.03%,90.44%和89.03%的精度,灵敏度和F1分数,以识别低风险或高危患者。与CXR图像或临床数据相比,这种多模式方法可提高准确性6%。最后,使用多元逻辑回归的列线图评分系统 - 用于对第一阶段确定的高风险患者的死亡风险进行分层。使用随机森林特征选择模型将乳酸脱氢酶(LDH),O2百分比,白细胞(WBC)计数,年龄和C反应蛋白(CRP)鉴定为有用的预测指标。开发了五个预测因素参数和基于CXR图像的列函数评分,以量化死亡的概率并将其分为两个风险组:分别存活(<50%)和死亡(> = 50%)。多模式技术能够预测F1评分为92.88%的高危患者的死亡概率。开发和验证队列曲线下的面积分别为0.981和0.939。
translated by 谷歌翻译
最近关于Covid-19的研究表明,CT成像提供了评估疾病进展和协助诊断的有用信息,以及帮助理解疾病。有越来越多的研究,建议使用深度学习来使用胸部CT扫描提供快速准确地定量Covid-19。兴趣的主要任务是胸部CT扫描的肺和肺病变的自动分割,确认或疑似Covid-19患者。在这项研究中,我们使用多中心数据集比较12个深度学习算法,包括开源和内部开发的算法。结果表明,合并不同的方法可以提高肺部分割,二元病变分割和多种子病变分割的总体测试集性能,从而分别为0.982,0.724和0.469的平均骰子分别。将得到的二元病变分段为91.3ml的平均绝对体积误差。通常,区分不同病变类型的任务更加困难,分别具有152mL的平均绝对体积差,分别为整合和磨碎玻璃不透明度为0.369和0.523的平均骰子分数。所有方法都以平均体积误差进行二元病变分割,该分段优于人类评估者的视觉评估,表明这些方法足以用于临床实践中使用的大规模评估。
translated by 谷歌翻译
机器学习和计算机视觉技术近年来由于其自动化,适合性和产生惊人结果的能力而迅速发展。因此,在本文中,我们调查了2014年至2022年之间发表的关键研究,展示了不同的机器学习算法研究人员用来分割肝脏,肝肿瘤和肝脉管结构的研究。我们根据感兴趣的组织(肝果,肝肿瘤或肝毒剂)对被调查的研究进行了划分,强调了同时解决多个任务的研究。此外,机器学习算法被归类为受监督或无监督的,如果属于某个方案的工作量很大,则将进一步分区。此外,对文献和包含上述组织面具的网站发现的不同数据集和挑战进行了彻底讨论,强调了组织者的原始贡献和其他研究人员的贡献。同样,在我们的评论中提到了文献中过度使用的指标,这强调了它们与手头的任务的相关性。最后,强调创新研究人员应对需要解决的差距的关键挑战和未来的方向,例如许多关于船舶分割挑战的研究的稀缺性以及为什么需要早日处理他们的缺席。
translated by 谷歌翻译
Deep learning (DL) analysis of Chest X-ray (CXR) and Computed tomography (CT) images has garnered a lot of attention in recent times due to the COVID-19 pandemic. Convolutional Neural Networks (CNNs) are well suited for the image analysis tasks when trained on humongous amounts of data. Applications developed for medical image analysis require high sensitivity and precision compared to any other fields. Most of the tools proposed for detection of COVID-19 claims to have high sensitivity and recalls but have failed to generalize and perform when tested on unseen datasets. This encouraged us to develop a CNN model, analyze and understand the performance of it by visualizing the predictions of the model using class activation maps generated using (Gradient-weighted Class Activation Mapping) Grad-CAM technique. This study provides a detailed discussion of the success and failure of the proposed model at an image level. Performance of the model is compared with state-of-the-art DL models and shown to be comparable. The data and code used are available at https://github.com/aleesuss/c19.
translated by 谷歌翻译
尽管有无数的同伴审查的论文,证明了新颖的人工智能(AI)基于大流行期间的Covid-19挑战的解决方案,但很少有临床影响。人工智能在Covid-19大流行期间的影响因缺乏模型透明度而受到极大的限制。这种系统审查考察了在大流行期间使用可解释的人工智能(Xai)以及如何使用它可以克服现实世界成功的障碍。我们发现,Xai的成功使用可以提高模型性能,灌输信任在最终用户,并提供影响用户决策所需的值。我们将读者介绍给常见的XAI技术,其实用程序以及其应用程序的具体例子。 XAI结果的评估还讨论了最大化AI的临床决策支持系统的价值的重要步骤。我们说明了Xai的古典,现代和潜在的未来趋势,以阐明新颖的XAI技术的演变。最后,我们在最近出版物支持的实验设计过程中提供了建议的清单。潜在解决方案的具体示例也解决了AI解决方案期间的共同挑战。我们希望本次审查可以作为提高未来基于AI的解决方案的临床影响的指导。
translated by 谷歌翻译
在过去的几年中,卷积神经网络(CNN)占据了计算机视野的领域,这要归功于它们提取功能及其在分类问题中出色的表现,例如在自动分析X射线中。不幸的是,这些神经网络被认为是黑盒算法,即不可能了解该算法如何实现最终结果。要将这些算法应用于不同领域并测试方法论的工作原理,我们需要使用可解释的AI技术。医学领域的大多数工作都集中在二进制或多类分类问题上。但是,在许多现实生活中,例如胸部X射线射线,可以同时出现不同疾病的放射学迹象。这引起了所谓的“多标签分类问题”。这些任务的缺点是类不平衡,即不同的标签没有相同数量的样本。本文的主要贡献是一种深度学习方法,用于不平衡的多标签胸部X射线数据集。它为当前未充分利用的Padchest数据集建立了基线,并基于热图建立了可解释的AI技术。该技术还包括概率和模型间匹配。我们系统的结果很有希望,尤其是考虑到使用的标签数量。此外,热图与预期区域相匹配,即它们标志着专家将用来做出决定的区域。
translated by 谷歌翻译
Clinical diagnostic and treatment decisions rely upon the integration of patient-specific data with clinical reasoning. Cancer presents a unique context that influence treatment decisions, given its diverse forms of disease evolution. Biomedical imaging allows noninvasive assessment of disease based on visual evaluations leading to better clinical outcome prediction and therapeutic planning. Early methods of brain cancer characterization predominantly relied upon statistical modeling of neuroimaging data. Driven by the breakthroughs in computer vision, deep learning became the de facto standard in the domain of medical imaging. Integrated statistical and deep learning methods have recently emerged as a new direction in the automation of the medical practice unifying multi-disciplinary knowledge in medicine, statistics, and artificial intelligence. In this study, we critically review major statistical and deep learning models and their applications in brain imaging research with a focus on MRI-based brain tumor segmentation. The results do highlight that model-driven classical statistics and data-driven deep learning is a potent combination for developing automated systems in clinical oncology.
translated by 谷歌翻译
每年有大约4.5亿人受到肺炎的影响,导致250万人死亡。 Covid-19也影响了1.81亿人,这导致了392万人伤亡。如果早期诊断,两种疾病死亡可能会显着降低。然而,目前诊断肺炎(投诉+胸部X射线)和Covid-19(RT-PCR)的方法分别存在专家放射科医生和时间。在深度学习模型的帮助下,可以从胸部X射线或CT扫描立即检测肺炎和Covid-19。这样,诊断肺炎/ Covid-19的过程可以更有效和普遍地制作。在本文中,我们的目标是引出,解释和评估,定性和定量,深入学习方法的主要进步,旨在检测或定位社区获得的肺炎(帽),病毒肺炎和Covid-19从胸部X-的图像光线和CT扫描。作为一个系统的审查,本文的重点在于解释了深度学习模型架构,该架构已经被修改或从划痕,以便WIWTH对概括性的关注。对于每个模型,本文回答了模型所设计的方式的问题,特定模型克服的挑战以及修改模型到所需规格的折衷。还提供了本文描述的所有模型的定量分析,以量化不同模型的有效性与相似的目标。一些权衡无法量化,因此它们在定性分析中明确提到,在整个纸张中完成。通过在一个地方编译和分析大量的研究细节,其中包含所有数据集,模型架构和结果,我们的目标是为对此字段感兴趣的初学者和当前研究人员提供一站式解决方案。
translated by 谷歌翻译
The devastation caused by the coronavirus pandemic makes it imperative to design automated techniques for a fast and accurate detection. We propose a novel non-invasive tool, using deep learning and imaging, for delineating COVID-19 infection in lungs. The Ensembling Attention-based Multi-scaled Convolution network (EAMC), employing Leave-One-Patient-Out (LOPO) training, exhibits high sensitivity and precision in outlining infected regions along with assessment of severity. The Attention module combines contextual with local information, at multiple scales, for accurate segmentation. Ensemble learning integrates heterogeneity of decision through different base classifiers. The superiority of EAMC, even with severe class imbalance, is established through comparison with existing state-of-the-art learning models over four publicly-available COVID-19 datasets. The results are suggestive of the relevance of deep learning in providing assistive intelligence to medical practitioners, when they are overburdened with patients as in pandemics. Its clinical significance lies in its unprecedented scope in providing low-cost decision-making for patients lacking specialized healthcare at remote locations.
translated by 谷歌翻译
肾细胞癌(RCC)是一种常见的癌症,随着临床行为的变化。懒惰的RCC通常是低级的,没有坏死,可以在没有治疗的情况下监测。激进的RCC通常是高级的,如果未及时检测和治疗,可能会导致转移和死亡。虽然大多数肾脏癌在CT扫描中都检测到,但分级是基于侵入性活检或手术的组织学。确定对CT图像的侵略性在临床上很重要,因为它促进了风险分层和治疗计划。这项研究旨在使用机器学习方法来识别与病理学特征相关的放射学特征,以促进评估CT图像而不是组织学上的癌症侵略性。本文提出了一种新型的自动化方法,即按区域(Corrfabr)相关的特征聚集,用于通过利用放射学和相应的不对齐病理学图像之间的相关性来对透明细胞RCC进行分类。 CORRFABR由三个主要步骤组成:(1)特征聚集,其中从放射学和病理图像中提取区域级特征,(2)融合,放射学特征与病理特征相关的放射学特征在区域级别上学习,并且(3)在其中预测的地方学到的相关特征用于仅使用CT作为输入来区分侵略性和顽固的透明细胞RCC。因此,在训练过程中,Corrfabr从放射学和病理学图像中学习,但是在没有病理图像的情况下,Corrfabr将使用CORFABR将侵略性与顽固的透明细胞RCC区分开。 Corrfabr仅比放射学特征改善了分类性能,二进制分类F1分数从0.68(0.04)增加到0.73(0.03)。这证明了将病理疾病特征纳入CT图像上透明细胞RCC侵袭性的分类的潜力。
translated by 谷歌翻译