This paper aims to provide an unsupervised modelling approach that allows for a more flexible representation of text embeddings. It jointly encodes the words and the paragraphs as individual matrices of arbitrary column dimension with unit Frobenius norm. The representation is also linguistically motivated with the introduction of a novel similarity metric. The proposed modelling and the novel similarity metric exploits the matrix structure of embeddings. We then go on to show that the same matrices can be reshaped into vectors of unit norm and transform our problem into an optimization problem over the spherical manifold. We exploit manifold optimization to efficiently train the matrix embeddings. We also quantitatively verify the quality of our text embeddings by showing that they demonstrate improved results in document classification, document clustering, and semantic textual similarity benchmark tests.
translated by 谷歌翻译
The relationship between words in a sentence often tells us more about the underlying semantic content of a document than its actual words, individually. In this work, we propose two novel algorithms, called Flexible Lexical Chain II and Fixed Lexical Chain II. These algorithms combine the semantic relations derived from lexical chains, prior knowledge from lexical databases, and the robustness of the distributional hypothesis in word embeddings as building blocks forming a single system. In short, our approach has three main contributions: (i) a set of techniques that fully integrate word embeddings and lexical chains; (ii) a more robust semantic representation that considers the latent relation between words in a document; and (iii) lightweight word embeddings models that can be extended to any natural language task. We intend to assess the knowledge of pre-trained models to evaluate their robustness in the document classification task. The proposed techniques are tested against seven word embeddings algorithms using five different machine learning classifiers over six scenarios in the document classification task. Our results show the integration between lexical chains and word embeddings representations sustain state-of-the-art results, even against more complex systems.
translated by 谷歌翻译
分布式文档表示是自然语言处理中的基本问题之一。目前分布式文档表示方法主要考虑单词或句子的上下文信息。这些方法不考虑文件作为整体的一致性,例如文档之间的关系,文档中的纸张标题和抽象,标题和描述或相邻机构之间的关系。一致性显示文档是否有意义,逻辑和句法,尤其是科学文档(论文或专利等)。在本文中,我们提出了一个耦合文本对嵌入(CTPE)模型来学习科学文档的表示,其通过分割文档来维护文档与耦合文本对的相干性。首先,我们将文档划分为构造耦合文本对的两个部分(例如,标题和抽象等)。然后,我们采用负面采样来构建两个部分来自不同文档的未耦合文本对。最后,我们训练模型以判断文本对是否被耦合或解耦并使用所获得的耦合文本对的嵌入作为嵌入文档。我们在三个数据集上执行实验,以获得一个信息检索任务和两个推荐任务。实验结果验证了所提出的CTPE模型的有效性。
translated by 谷歌翻译
跨语言嵌入可以应用于多种语言的几种自然语言处理应用程序。与先前使用基于欧几里得空间嵌入单词嵌入的作品不同,这篇简短的论文提出了一种简单有效的跨语言2VEC模型,该模型适应了PoinCar \'E Ball of双曲空间的球模型,从 - 英语平行语料库。已经表明,双曲线嵌入可以捕获和保留分层关系。我们在高呼气和类比任务上评估了模型。所提出的模型在跨语言类比任务上与香草word2Vec模型实现了可比的性能,超呼气任务表明,跨语义的poincar \'e Word2vec模型可以从跨语言中捕获潜在的层次结构,而这些文本跨越跨语言,这些结构是从跨语言中捕获的基于欧几里得的Word2Vec表示。我们的结果表明,通过保留潜在的分层信息,双曲线空间可以为跨语性嵌入提供更好的表示。
translated by 谷歌翻译
Natural Language Understanding has seen an increasing number of publications in the last few years, especially after robust word embeddings models became prominent, when they proved themselves able to capture and represent semantic relationships from massive amounts of data. Nevertheless, traditional models often fall short in intrinsic issues of linguistics, such as polysemy and homonymy. Any expert system that makes use of natural language in its core, can be affected by a weak semantic representation of text, resulting in inaccurate outcomes based on poor decisions. To mitigate such issues, we propose a novel approach called Most Suitable Sense Annotation (MSSA), that disambiguates and annotates each word by its specific sense, considering the semantic effects of its context. Our approach brings three main contributions to the semantic representation scenario: (i) an unsupervised technique that disambiguates and annotates words by their senses, (ii) a multi-sense embeddings model that can be extended to any traditional word embeddings algorithm, and (iii) a recurrent methodology that allows our models to be re-used and their representations refined. We test our approach on six different benchmarks for the word similarity task, showing that our approach can produce state-of-the-art results and outperforms several more complex state-of-the-art systems.
translated by 谷歌翻译
近年来,人们对开发自然语言处理(NLP)中可解释模型的利益越来越多。大多数现有模型旨在识别输入功能,例如对于模型预测而言重要的单词或短语。然而,在NLP中开发的神经模型通常以层次结构的方式构成单词语义,文本分类需要层次建模来汇总本地信息,以便处理主题和标签更有效地转移。因此,单词或短语的解释不能忠实地解释文本分类中的模型决策。本文提出了一种新型的层次解释性神经文本分类器,称为提示,该分类器可以自动以层次结构方式以标记相关主题的形式生成模型预测的解释。模型解释不再处于单词级别,而是基于主题作为基本语义单元。评论数据集和新闻数据集的实验结果表明,我们所提出的方法与现有最新的文本分类器相当地达到文本分类结果,并比其他可解释的神经文本更忠实于模型的预测和更好地理解人类的解释分类器。
translated by 谷歌翻译
Many machine learning algorithms require the input to be represented as a fixed-length feature vector. When it comes to texts, one of the most common fixed-length features is bag-of-words. Despite their popularity, bag-of-words features have two major weaknesses: they lose the ordering of the words and they also ignore semantics of the words. For example, "powerful," "strong" and "Paris" are equally distant. In this paper, we propose Paragraph Vector, an unsupervised algorithm that learns fixed-length feature representations from variable-length pieces of texts, such as sentences, paragraphs, and documents. Our algorithm represents each document by a dense vector which is trained to predict words in the document. Its construction gives our algorithm the potential to overcome the weaknesses of bag-ofwords models. Empirical results show that Paragraph Vectors outperform bag-of-words models as well as other techniques for text representations. Finally, we achieve new state-of-the-art results on several text classification and sentiment analysis tasks.
translated by 谷歌翻译
Text classification of unseen classes is a challenging Natural Language Processing task and is mainly attempted using two different types of approaches. Similarity-based approaches attempt to classify instances based on similarities between text document representations and class description representations. Zero-shot text classification approaches aim to generalize knowledge gained from a training task by assigning appropriate labels of unknown classes to text documents. Although existing studies have already investigated individual approaches to these categories, the experiments in literature do not provide a consistent comparison. This paper addresses this gap by conducting a systematic evaluation of different similarity-based and zero-shot approaches for text classification of unseen classes. Different state-of-the-art approaches are benchmarked on four text classification datasets, including a new dataset from the medical domain. Additionally, novel SimCSE and SBERT-based baselines are proposed, as other baselines used in existing work yield weak classification results and are easily outperformed. Finally, the novel similarity-based Lbl2TransformerVec approach is presented, which outperforms previous state-of-the-art approaches in unsupervised text classification. Our experiments show that similarity-based approaches significantly outperform zero-shot approaches in most cases. Additionally, using SimCSE or SBERT embeddings instead of simpler text representations increases similarity-based classification results even further.
translated by 谷歌翻译
Unsupervised vector-based approaches to semantics can model rich lexical meanings, but they largely fail to capture sentiment information that is central to many word meanings and important for a wide range of NLP tasks. We present a model that uses a mix of unsupervised and supervised techniques to learn word vectors capturing semantic term-document information as well as rich sentiment content. The proposed model can leverage both continuous and multi-dimensional sentiment information as well as non-sentiment annotations. We instantiate the model to utilize the document-level sentiment polarity annotations present in many online documents (e.g. star ratings). We evaluate the model using small, widely used sentiment and subjectivity corpora and find it out-performs several previously introduced methods for sentiment classification. We also introduce a large dataset of movie reviews to serve as a more robust benchmark for work in this area.
translated by 谷歌翻译
使用机器学习算法从未标记的文本中提取知识可能很复杂。文档分类和信息检索是两个应用程序,可以从无监督的学习(例如文本聚类和主题建模)中受益,包括探索性数据分析。但是,无监督的学习范式提出了可重复性问题。初始化可能会导致可变性,具体取决于机器学习算法。此外,关于群集几何形状,扭曲可能会产生误导。在原因中,异常值和异常的存在可能是决定因素。尽管初始化和异常问题与文本群集和主题建模相关,但作者并未找到对它们的深入分析。这项调查提供了这些亚地区的系统文献综述(2011-2022),并提出了共同的术语,因为类似的程序具有不同的术语。作者描述了研究机会,趋势和开放问题。附录总结了与审查的作品直接或间接相关的文本矢量化,分解和聚类算法的理论背景。
translated by 谷歌翻译
Embedding words in vector space is a fundamental first step in state-of-the-art natural language processing (NLP). Typical NLP solutions employ pre-defined vector representations to improve generalization by co-locating similar words in vector space. For instance, Word2Vec is a self-supervised predictive model that captures the context of words using a neural network. Similarly, GLoVe is a popular unsupervised model incorporating corpus-wide word co-occurrence statistics. Such word embedding has significantly boosted important NLP tasks, including sentiment analysis, document classification, and machine translation. However, the embeddings are dense floating-point vectors, making them expensive to compute and difficult to interpret. In this paper, we instead propose to represent the semantics of words with a few defining words that are related using propositional logic. To produce such logical embeddings, we introduce a Tsetlin Machine-based autoencoder that learns logical clauses self-supervised. The clauses consist of contextual words like "black," "cup," and "hot" to define other words like "coffee," thus being human-understandable. We evaluate our embedding approach on several intrinsic and extrinsic benchmarks, outperforming GLoVe on six classification tasks. Furthermore, we investigate the interpretability of our embedding using the logical representations acquired during training. We also visualize word clusters in vector space, demonstrating how our logical embedding co-locate similar words.
translated by 谷歌翻译
传统上,无监督的情感分析是通过计算存储在情感词典中的文本中的这些词,然后根据注册正面和否定词的比例分配标签的文字来执行的。尽管这些“计数”方法被认为是有益的,因为它们确定性地对文本进行评分,但当分析的文本简短或词汇与词典认为默认值的情况不同时,它们的分类率降低。本文提出的称为LEX2SENT的模型是一种无监督的情感分析方法,用于改善情感词典方法的分类。为此,对DOC2VEC模型进行了训练,以确定嵌入文档嵌入与情感词典正面和负部分的嵌入之间的距离。然后对这些距离进行评估,以在重新采样文档上多次执行DOC2VEC,并进行平均以执行分类任务。对于本文考虑的三个基准数据集,拟议的LEX2SENT优于每个评估的词典,包括Vader等最先进的词典或分类率的意见词典。
translated by 谷歌翻译
Text classification is an important and classical problem in natural language processing. There have been a number of studies that applied convolutional neural networks (convolution on regular grid, e.g., sequence) to classification. However, only a limited number of studies have explored the more flexible graph convolutional neural networks (convolution on non-grid, e.g., arbitrary graph) for the task. In this work, we propose to use graph convolutional networks for text classification. We build a single text graph for a corpus based on word co-occurrence and document word relations, then learn a Text Graph Convolutional Network (Text GCN) for the corpus. Our Text GCN is initialized with one-hot representation for word and document, it then jointly learns the embeddings for both words and documents, as supervised by the known class labels for documents. Our experimental results on multiple benchmark datasets demonstrate that a vanilla Text GCN without any external word embeddings or knowledge outperforms state-of-the-art methods for text classification. On the other hand, Text GCN also learns predictive word and document embeddings. In addition, experimental results show that the improvement of Text GCN over state-of-the-art comparison methods become more prominent as we lower the percentage of training data, suggesting the robustness of Text GCN to less training data in text classification.
translated by 谷歌翻译
测量不同文本的语义相似性在数字人文研究中具有许多重要应用,例如信息检索,文档聚类和文本摘要。不同方法的性能取决于文本,域和语言的长度。本研究侧重于试验一些目前的芬兰方法,这是一种形态学丰富的语言。与此同时,我们提出了一种简单的方法TFW2V,它在处理长文本文档和有限的数据时显示出高效率。此外,我们设计了一种客观评估方法,可以用作基准标记文本相似性方法的框架。
translated by 谷歌翻译
Obtaining labelled data in a particular context could be expensive and time consuming. Although different algorithms, including unsupervised learning, semi-supervised learning, self-learning have been adopted, the performance of text classification varies with context. Given the lack of labelled dataset, we proposed a novel and simple unsupervised text classification model to classify cargo content in international shipping industry using the Standard International Trade Classification (SITC) codes. Our method stems from representing words using pretrained Glove Word Embeddings and finding the most likely label using Cosine Similarity. To compare unsupervised text classification model with supervised classification, we also applied several Transformer models to classify cargo content. Due to lack of training data, the SITC numerical codes and the corresponding textual descriptions were used as training data. A small number of manually labelled cargo content data was used to evaluate the classification performances of the unsupervised classification and the Transformer based supervised classification. The comparison reveals that unsupervised classification significantly outperforms Transformer based supervised classification even after increasing the size of the training dataset by 30%. Lacking training data is a key bottleneck that prohibits deep learning models (such as Transformers) from successful practical applications. Unsupervised classification can provide an alternative efficient and effective method to classify text when there is scarce training data.
translated by 谷歌翻译
In the past few decades, there has been an explosion in the amount of available data produced from various sources with different topics. The availability of this enormous data necessitates us to adopt effective computational tools to explore the data. This leads to an intense growing interest in the research community to develop computational methods focused on processing this text data. A line of study focused on condensing the text so that we are able to get a higher level of understanding in a shorter time. The two important tasks to do this are keyword extraction and text summarization. In keyword extraction, we are interested in finding the key important words from a text. This makes us familiar with the general topic of a text. In text summarization, we are interested in producing a short-length text which includes important information about the document. The TextRank algorithm, an unsupervised learning method that is an extension of the PageRank (algorithm which is the base algorithm of Google search engine for searching pages and ranking them) has shown its efficacy in large-scale text mining, especially for text summarization and keyword extraction. this algorithm can automatically extract the important parts of a text (keywords or sentences) and declare them as the result. However, this algorithm neglects the semantic similarity between the different parts. In this work, we improved the results of the TextRank algorithm by incorporating the semantic similarity between parts of the text. Aside from keyword extraction and text summarization, we develop a topic clustering algorithm based on our framework which can be used individually or as a part of generating the summary to overcome coverage problems.
translated by 谷歌翻译
科学世界正在快速改变,新技术正在开发,新的趋势正在进行频率增加。本文介绍了对学术出版物进行科学分析的框架,这对监测研究趋势并确定潜在的创新至关重要。该框架采用并结合了各种自然语言处理技术,例如Word Embedding和主题建模。嵌入单词嵌入用于捕获特定于域的单词的语义含义。我们提出了两种新颖的科学出版物嵌入,即PUB-G和PUB-W,其能够在各种研究领域学习一般的语义含义以及特定于域的单词。此后,主题建模用于识别这些更大的研究领域内的研究主题集群。我们策划了一个出版物数据集,由两条会议组成,并从1995年到2020年的两项期刊从两个研究领域组成。实验结果表明,与其他基线嵌入式的基于主题连贯性,我们的PUB-G和PUB-W嵌入式与其他基线嵌入式相比优越。
translated by 谷歌翻译
Word Mover的距离(WMD)计算单词和模型之间的距离与两个文本序列中的单词之间的移动成本相似。但是,它在句子相似性评估中没有提供良好的性能,因为它不包含单词重要性,并且在句子中未能将固有的上下文和结构信息纳入句子。提出了一种使用语法解析树(称为语法感知单词Mover的距离(SYNWMD))的改进的WMD方法,以解决这项工作中的这两个缺点。首先,基于从句子树的句法解析树中提取的一词共发生统计量建立了加权图。每个单词的重要性是从图形连接性推断出的。其次,在计算单词之间的距离时,考虑了单词的局部句法解析结构。为了证明拟议的SynWMD的有效性,我们对6个文本语义相似性(STS)数据集和4个句子分类数据集进行了实验。实验结果表明,SynWMD在STS任务上实现了最先进的性能。它还在句子分类任务上胜过其他基于WMD的方法。
translated by 谷歌翻译
We report on a series of experiments with convolutional neural networks (CNN) trained on top of pre-trained word vectors for sentence-level classification tasks. We show that a simple CNN with little hyperparameter tuning and static vectors achieves excellent results on multiple benchmarks. Learning task-specific vectors through fine-tuning offers further gains in performance. We additionally propose a simple modification to the architecture to allow for the use of both task-specific and static vectors. The CNN models discussed herein improve upon the state of the art on 4 out of 7 tasks, which include sentiment analysis and question classification.
translated by 谷歌翻译
Instead of mining coherent topics from a given text corpus in a completely unsupervised manner, seed-guided topic discovery methods leverage user-provided seed words to extract distinctive and coherent topics so that the mined topics can better cater to the user's interest. To model the semantic correlation between words and seeds for discovering topic-indicative terms, existing seed-guided approaches utilize different types of context signals, such as document-level word co-occurrences, sliding window-based local contexts, and generic linguistic knowledge brought by pre-trained language models. In this work, we analyze and show empirically that each type of context information has its value and limitation in modeling word semantics under seed guidance, but combining three types of contexts (i.e., word embeddings learned from local contexts, pre-trained language model representations obtained from general-domain training, and topic-indicative sentences retrieved based on seed information) allows them to complement each other for discovering quality topics. We propose an iterative framework, SeedTopicMine, which jointly learns from the three types of contexts and gradually fuses their context signals via an ensemble ranking process. Under various sets of seeds and on multiple datasets, SeedTopicMine consistently yields more coherent and accurate topics than existing seed-guided topic discovery approaches.
translated by 谷歌翻译