当训练数据稀缺时,用人为生成的数据进行训练可以是一种替代方法,但由于较大的域间隙,培训数据的概括性能差。在本文中,我们通过使用因果框架进行数据生成来表征域间隙。我们假设真实和合成数据具有常见的内容变量,但样式变量不同。因此,随着模型了解滋扰样式变量,对合成数据集训练的模型可能具有较差的概括。为此,我们提出了因果不变性学习,该学习鼓励模型学习一种风格不变的表示,从而增强了SYN到真实的概括。此外,我们提出了一种简单而有效的特征蒸馏方法,以防止灾难性地忘记对真实领域的语义知识。总而言之,我们将我们的方法称为指导性因果不变的syn到现实概括,从而有效地提高了syn到真实的概括的性能。我们从经验上验证了所提出的方法的有效性,尤其是我们的方法在视觉SYN到现实的域概括任务(例如图像分类和语义分割)上实现了最新的方法。
translated by 谷歌翻译
我们建议利用模拟的潜力,以域的概括方式对现实世界自动驾驶场景的语义分割。对分割网络进行了训练,没有任何目标域数据,并在看不见的目标域进行了测试。为此,我们提出了一种新的域随机化和金字塔一致性的方法,以学习具有高推广性的模型。首先,我们建议使用辅助数据集以视觉外观的方式随机将合成图像随机化,以有效地学习域不变表示。其次,我们进一步在不同的“风格化”图像和图像中实施了金字塔一致性,以分别学习域不变和规模不变的特征。关于从GTA和合成对城市景观,BDD和Mapillary的概括进行了广泛的实验;而我们的方法比最新技术取得了卓越的成果。值得注意的是,我们的概括结果与最先进的模拟域适应方法相比甚至更好,甚至比在训练时访问目标域数据的结果。
translated by 谷歌翻译
To date, most existing self-supervised learning methods are designed and optimized for image classification. These pre-trained models can be sub-optimal for dense prediction tasks due to the discrepancy between image-level prediction and pixel-level prediction. To fill this gap, we aim to design an effective, dense self-supervised learning method that directly works at the level of pixels (or local features) by taking into account the correspondence between local features. We present dense contrastive learning (DenseCL), which implements self-supervised learning by optimizing a pairwise contrastive (dis)similarity loss at the pixel level between two views of input images.Compared to the baseline method MoCo-v2, our method introduces negligible computation overhead (only <1% slower), but demonstrates consistently superior performance when transferring to downstream dense prediction tasks including object detection, semantic segmentation and instance segmentation; and outperforms the state-of-the-art methods by a large margin. Specifically, over the strong MoCo-v2 baseline, our method achieves significant improvements of 2.0% AP on PASCAL VOC object detection, 1.1% AP on COCO object detection, 0.9% AP on COCO instance segmentation, 3.0% mIoU on PASCAL VOC semantic segmentation and 1.8% mIoU on Cityscapes semantic segmentation.
translated by 谷歌翻译
Domain adaptation aims to bridge the domain shifts between the source and the target domain. These shifts may span different dimensions such as fog, rainfall, etc. However, recent methods typically do not consider explicit prior knowledge about the domain shifts on a specific dimension, thus leading to less desired adaptation performance. In this paper, we study a practical setting called Specific Domain Adaptation (SDA) that aligns the source and target domains in a demanded-specific dimension. Within this setting, we observe the intra-domain gap induced by different domainness (i.e., numerical magnitudes of domain shifts in this dimension) is crucial when adapting to a specific domain. To address the problem, we propose a novel Self-Adversarial Disentangling (SAD) framework. In particular, given a specific dimension, we first enrich the source domain by introducing a domainness creator with providing additional supervisory signals. Guided by the created domainness, we design a self-adversarial regularizer and two loss functions to jointly disentangle the latent representations into domainness-specific and domainness-invariant features, thus mitigating the intra-domain gap. Our method can be easily taken as a plug-and-play framework and does not introduce any extra costs in the inference time. We achieve consistent improvements over state-of-the-art methods in both object detection and semantic segmentation.
translated by 谷歌翻译
跨图像建立视觉对应是一项具有挑战性且必不可少的任务。最近,已经提出了大量的自我监督方法,以更好地学习视觉对应的表示。但是,我们发现这些方法通常无法利用语义信息,并且在低级功能的匹配方面过度融合。相反,人类的视觉能够将不同的物体区分为跟踪的借口。受此范式的启发,我们建议学习语义意识的细粒对应关系。首先,我们证明语义对应是通过一组丰富的图像级别自我监督方法隐式获得的。我们进一步设计了一个像素级的自我监督学习目标,该目标专门针对细粒的对应关系。对于下游任务,我们将这两种互补的对应表示形式融合在一起,表明它们是协同增强性能的。我们的方法超过了先前的最先进的自我监督方法,使用卷积网络在各种视觉通信任务上,包括视频对象分割,人姿势跟踪和人类部分跟踪。
translated by 谷歌翻译
Domain shift widely exists in the visual world, while modern deep neural networks commonly suffer from severe performance degradation under domain shift due to the poor generalization ability, which limits the real-world applications. The domain shift mainly lies in the limited source environmental variations and the large distribution gap between source and unseen target data. To this end, we propose a unified framework, Style-HAllucinated Dual consistEncy learning (SHADE), to handle such domain shift in various visual tasks. Specifically, SHADE is constructed based on two consistency constraints, Style Consistency (SC) and Retrospection Consistency (RC). SC enriches the source situations and encourages the model to learn consistent representation across style-diversified samples. RC leverages general visual knowledge to prevent the model from overfitting to source data and thus largely keeps the representation consistent between the source and general visual models. Furthermore, we present a novel style hallucination module (SHM) to generate style-diversified samples that are essential to consistency learning. SHM selects basis styles from the source distribution, enabling the model to dynamically generate diverse and realistic samples during training. Extensive experiments demonstrate that our versatile SHADE can significantly enhance the generalization in various visual recognition tasks, including image classification, semantic segmentation and object detection, with different models, i.e., ConvNets and Transformer.
translated by 谷歌翻译
In contrastive self-supervised learning, the common way to learn discriminative representation is to pull different augmented "views" of the same image closer while pushing all other images further apart, which has been proven to be effective. However, it is unavoidable to construct undesirable views containing different semantic concepts during the augmentation procedure. It would damage the semantic consistency of representation to pull these augmentations closer in the feature space indiscriminately. In this study, we introduce feature-level augmentation and propose a novel semantics-consistent feature search (SCFS) method to mitigate this negative effect. The main idea of SCFS is to adaptively search semantics-consistent features to enhance the contrast between semantics-consistent regions in different augmentations. Thus, the trained model can learn to focus on meaningful object regions, improving the semantic representation ability. Extensive experiments conducted on different datasets and tasks demonstrate that SCFS effectively improves the performance of self-supervised learning and achieves state-of-the-art performance on different downstream tasks.
translated by 谷歌翻译
无监督的域适应性(UDA)旨在使在标记的源域上训练的模型适应未标记的目标域。在本文中,我们提出了典型的对比度适应(PROCA),这是一种无监督域自适应语义分割的简单有效的对比度学习方法。以前的域适应方法仅考虑跨各个域的阶级内表示分布的对齐,而阶层间结构关系的探索不足,从而导致目标域上的对齐表示可能不像在源上歧视的那样容易歧视。域了。取而代之的是,ProCA将类间信息纳入班级原型,并采用以班级为中心的分布对齐进行适应。通过将同一类原型与阳性和其他类原型视为实现以集体为中心的分配对齐方式的负面原型,Proca在经典领域适应任务上实现了最先进的性能,{\ em i.e. text {and} synthia $ \ to $ cityScapes}。代码可在\ href {https://github.com/jiangzhengkai/proca} {proca}获得代码
translated by 谷歌翻译
In recent years, generative adversarial networks (GANs) have been an actively studied topic and shown to successfully produce high-quality realistic images in various domains. The controllable synthesis ability of GAN generators suggests that they maintain informative, disentangled, and explainable image representations, but leveraging and transferring their representations to downstream tasks is largely unexplored. In this paper, we propose to distill knowledge from GAN generators by squeezing and spanning their representations. We squeeze the generator features into representations that are invariant to semantic-preserving transformations through a network before they are distilled into the student network. We span the distilled representation of the synthetic domain to the real domain by also using real training data to remedy the mode collapse of GANs and boost the student network performance in a real domain. Experiments justify the efficacy of our method and reveal its great significance in self-supervised representation learning. Code is available at https://github.com/yangyu12/squeeze-and-span.
translated by 谷歌翻译
自我监督的对比学习的最新进展产生了良好的图像级表示,这有利于分类任务,但通常会忽略像素级详细信息,从而导致转移性能不令人满意地转移到密集的预测任务,例如语义细分。在这项工作中,我们提出了一种称为CP2的像素对比度学习方法(拷贝性对比度预处理),该方法促进了图像和像素级表示学习,因此更适合下游密集的预测任务。详细说明,我们将随机的作物从图像(前景)复制到不同的背景图像,并为语义分割模型提供了以1)为目标的语义分割模型。共享相同的前景。表现出色表明CP2在下游语义分段中的表现强劲:通过对Pascal VOC 2012上的CP2预审计的模型,我们获得了78.6%MIOU,具有RESNET-50和79.5%的vit-s。
translated by 谷歌翻译
在本文中,我们研究了合成到现实域的广义语义分割的任务,该任务旨在学习一个仅使用合成数据的现实场景的强大模型。合成数据和现实世界数据之间的大域移动,包括有限的源环境变化以及合成和现实世界数据之间的较大分布差距,极大地阻碍了看不见的现实现实场景中的模型性能。在这项工作中,我们建议使用样式挂钩的双重一致性学习(Shad)框架来处理此类域转移。具体而言,阴影是基于两个一致性约束,样式一致性(SC)和回顾一致性(RC)构建的。 SC丰富了来源情况,并鼓励模型在样式多样化样本中学习一致的表示。 RC利用现实世界的知识来防止模型过度拟合到合成数据,因此在很大程度上使综合模型和现实世界模型之间的表示一致。此外,我们提出了一个新颖的样式幻觉模块(SHM),以生成对一致性学习至关重要的样式变化样本。 SHM从源分布中选择基本样式,使模型能够在训练过程中动态生成多样化和现实的样本。实验表明,我们的阴影在单个和多源设置上的三个现实世界数据集的平均MIOU的平均MIOU的平均MIOU的平均水平分别优于最先进的方法,并优于最先进的方法。
translated by 谷歌翻译
Semantic segmentation is a key problem for many computer vision tasks. While approaches based on convolutional neural networks constantly break new records on different benchmarks, generalizing well to diverse testing environments remains a major challenge. In numerous real world applications, there is indeed a large gap between data distributions in train and test domains, which results in severe performance loss at run-time. In this work, we address the task of unsupervised domain adaptation in semantic segmentation with losses based on the entropy of the pixel-wise predictions. To this end, we propose two novel, complementary methods using (i) an entropy loss and (ii) an adversarial loss respectively. We demonstrate state-of-theart performance in semantic segmentation on two challenging "synthetic-2-real" set-ups 1 and show that the approach can also be used for detection.
translated by 谷歌翻译
本文介绍了密集的暹罗网络(Denseiam),这是一个简单的无监督学习框架,用于密集的预测任务。它通过以两种类型的一致性(即像素一致性和区域一致性)之间最大化一个图像的两个视图之间的相似性来学习视觉表示。具体地,根据重叠区域中的确切位置对应关系,Denseiam首先最大化像素级的空间一致性。它还提取一批与重叠区域中某些子区域相对应的区域嵌入,以形成区域一致性。与以前需要负像素对,动量编码器或启发式面膜的方法相反,Denseiam受益于简单的暹罗网络,并优化了不同粒度的一致性。它还证明了简单的位置对应关系和相互作用的区域嵌入足以学习相似性。我们将Denseiam应用于ImageNet,并在各种下游任务上获得竞争性改进。我们还表明,只有在一些特定于任务的损失中,简单的框架才能直接执行密集的预测任务。在现有的无监督语义细分基准中,它以2.1 miou的速度超过了最新的细分方法,培训成本为28%。代码和型号在https://github.com/zwwwayne/densesiam上发布。
translated by 谷歌翻译
在实际应用中,高度要求进行语义细分的域概括,在这种应用中,训练有素的模型预计在以前看不见的域中可以很好地工作。一个挑战在于缺乏数据可能涵盖可能看不见的培训领域的各种分布的数据。在本文中,我们提出了一个Web图像辅助域的概括(Wedge)方案,该方案是第一个利用Web爬行图像多样性进行概括的语义细分。为了探索和利用现实世界的数据分布,我们收集了一个网络爬行的数据集,该数据集在天气条件,站点,照明,相机样式等方面呈现出较大的多样性。我们还提出了一种注入Web样式表示的方法 - 将数据编进培训期间的源域中,这使网络能够以可靠的标签体验各种样式的图像,以进行有效的培训。此外,我们使用带有预测的伪标签的Web爬行数据集进行培训,以进一步增强网络的功能。广泛的实验表明,我们的方法显然优于现有的域泛化技术。
translated by 谷歌翻译
由于难以获得地面真理标签,从虚拟世界数据集学习对于像语义分割等现实世界的应用非常关注。从域适应角度来看,关键挑战是学习输入的域名签名表示,以便从虚拟数据中受益。在本文中,我们提出了一种新颖的三叉戟架构,该架构强制执行共享特征编码器,同时满足对抗源和目标约束,从而学习域不变的特征空间。此外,我们还介绍了一种新颖的训练管道,在前向通过期间能够自我引起的跨域数据增强。这有助于进一步减少域间隙。结合自我培训过程,我们在基准数据集(例如GTA5或Synthia适应城市景观)上获得最先进的结果。Https://github.com/hmrc-ael/trideadapt提供了代码和预先训练的型号。
translated by 谷歌翻译
语义分割在广泛的计算机视觉应用中起着基本作用,提供了全球对图像​​的理解的关键信息。然而,最先进的模型依赖于大量的注释样本,其比在诸如图像分类的任务中获得更昂贵的昂贵的样本。由于未标记的数据替代地获得更便宜,因此无监督的域适应达到了语义分割社区的广泛成功并不令人惊讶。本调查致力于总结这一令人难以置信的快速增长的领域的五年,这包含了语义细分本身的重要性,以及将分段模型适应新环境的关键需求。我们提出了最重要的语义分割方法;我们对语义分割的域适应技术提供了全面的调查;我们揭示了多域学习,域泛化,测试时间适应或无源域适应等较新的趋势;我们通过描述在语义细分研究中最广泛使用的数据集和基准测试来结束本调查。我们希望本调查将在学术界和工业中提供具有全面参考指导的研究人员,并有助于他们培养现场的新研究方向。
translated by 谷歌翻译
自我监督的方法(SSL)通过最大化两个增强视图之间的相互信息,裁剪是一种巨大的成功,其中裁剪是一种流行的增强技术。裁剪区域广泛用于构造正对,而裁剪后的左侧区域很少被探讨在现有方法中,尽管它们在一起构成相同的图像实例并且两者都有助于对类别的描述。在本文中,我们首次尝试从完整的角度来展示两种地区的重要性,并提出称为区域对比学习(RegionCl)的简单但有效的借口任务。具体地,给定两个不同的图像,我们随机从具有相同大小的每个图像随机裁剪区域(称为粘贴视图)并将它们交换以分别与左区域(称为CANVAS视图)一起组成两个新图像。然后,可以根据以下简单标准提供对比度对,即,每个视图是(1)阳性,其视图从相同的原始图像增强,并且与从其他图像增强的视图增强的视图。对于对流行的SSL方法进行微小的修改,RegionCL利用这些丰富的对并帮助模型区分来自画布和粘贴视图的区域特征,因此学习更好的视觉表示。 Imagenet,Coco和Citycapes上的实验表明,RegionCL通过大型边缘改善Moco V2,Densecl和Simsiam,并在分类,检测和分割任务上实现最先进的性能。代码将在https://github.com/annbless/regioncl.git上获得。
translated by 谷歌翻译
虽然监督语义分割存在重大进展,但由于领域偏差,将分段模型部署到解除域来仍然具有挑战性。域适应可以通过将知识从标记的源域传输到未标记的目标域来帮助。以前的方法通常尝试执行对全局特征的适应,然而,通常忽略要计入特征空间中的每个像素的本地语义附属机构,导致较少的可辨性。为解决这个问题,我们提出了一种用于细粒度阶级对齐的新型语义原型对比学习框架。具体地,语义原型提供了用于每个像素鉴别的表示学习的监控信号,并且需要在特征空间中的源极和目标域的每个像素来反映相应的语义原型的内容。通过这种方式,我们的框架能够明确地制作较近的类别的像素表示,并且进一步越来越多地分开,以改善分割模型的鲁棒性以及减轻域移位问题。与最先进的方法相比,我们的方法易于实施并达到优异的结果,如众多实验所展示的那样。代码在[此HTTPS URL](https://github.com/binhuixie/spcl)上公开可用。
translated by 谷歌翻译
最近的自我监督学习(SSL)方法在从未标记的图像中学习视觉表示方面显示出令人印象深刻的结果。本文旨在通过利用基础神经网络的建筑优势进一步提高其性能,因为SSL的当前最新视觉借口任务不享受好处,即它们是架构 - 敏捷的。特别是,我们专注于视觉变形金刚(VIT),这些变压器最近引起了人们的关注,作为更好的建筑选择,通常优于各种视觉任务的卷积网络。 VIT的独特特征在于,它从图像中采取了一系列不交联补丁,并在内部处理补丁级表示。受此启发的启发,我们设计了一个简单而有效的视觉借口任务,创造了自我绘制,以学习更好的补丁级表示。要具体而言,我们对每个贴片及其邻居的不变性执行,即每个贴片都将相似的相邻贴片视为正样品。因此,用自我绘制的培训可以学习斑块之间更有意义的关系(不使用人类通知的标签),这可能是有益的,特别是对密集预测类型的下游任务。尽管它很简单,但我们证明了它可以显着提高现有SSL方法的性能,包括对象检测和语义分割。具体而言,SelfPatch通过在可可对象检测上实现+1.3 AP,在COCO实例段中+1.2 AP显着改善了最新的自我监督的VIT,Dino和+2.9 MIOU在ADE20K语义段中。
translated by 谷歌翻译
知识蒸馏已成功地应用于各种任务。当前的蒸馏算法通常通过模仿教师的产出来改善学生的表现。本文表明,教师还可以通过指导学生的功能恢复来提高学生的代表权。从这个角度来看,我们提出了掩盖的生成蒸馏(MGD),这很简单:我们掩盖了学生功能的随机像素,并强迫它通过简单的块生成教师的完整功能。 MGD是一种真正的基于特征的蒸馏方法,可用于各种任务,包括图像分类,对象检测,语义分割和实例分割。我们在具有广泛数据集的不同模型上进行了实验,结果表明所有学生都取得了出色的改进。值得注意的是,我们将RESNET-18从69.90%提高到71.69%的Imagenet Top-1精度,带有Resnet-50骨架的视网膜从37.4到41.0界盒映射,基于Resnet-50的独奏从33.1到33.1至36.2 Mask Map和DeepLabV3, 18从73.20到76.02 miou。我们的代码可在https://github.com/yzd-v/mgd上找到。
translated by 谷歌翻译