常规的几杆分类(FSC)旨在识别出有限标记的数据的新课程中的样本。最近,已经提出了域泛化FSC(DG-FSC),目的是识别来自看不见的域的新型类样品。 DG-FSC由于基础类(用于培训)和新颖类(评估中遇到)之间的域移位,对许多模型构成了巨大的挑战。在这项工作中,我们为解决DG-FSC做出了两个新颖的贡献。我们的首要贡献是提出重生网络(BAN)情节培训,并全面研究其对DG-FSC的有效性。作为一种特定的知识蒸馏形式,已证明禁令可以通过封闭式设置来改善常规监督分类的概括。这种改善的概括促使我们研究了DG-FSC的禁令,我们表明禁令有望解决DG-FSC中遇到的域转移。在令人鼓舞的发现的基础上,我们的第二个(主要)贡献是提出很少的禁令,FS-Ban,这是DG-FSC的新型禁令方法。我们提出的FS-BAN包括新颖的多任务学习目标:相互正则化,不匹配的老师和元控制温度,这些目标都是专门设计的,旨在克服DG-FSC中的中心和独特挑战,即过度拟合和领域差异。我们分析了这些技术的不同设计选择。我们使用六个数据集和三个基线模型进行全面的定量和定性分析和评估。结果表明,我们提出的FS-BAN始终提高基线模型的概括性能,并达到DG-FSC的最先进的准确性。
translated by 谷歌翻译
The focus of recent meta-learning research has been on the development of learning algorithms that can quickly adapt to test time tasks with limited data and low computational cost. Few-shot learning is widely used as one of the standard benchmarks in meta-learning. In this work, we show that a simple baseline: learning a supervised or selfsupervised representation on the meta-training set, followed by training a linear classifier on top of this representation, outperforms state-of-the-art few-shot learning methods. An additional boost can be achieved through the use of selfdistillation. This demonstrates that using a good learned embedding model can be more effective than sophisticated meta-learning algorithms. We believe that our findings motivate a rethinking of few-shot image classification benchmarks and the associated role of meta-learning algorithms.
translated by 谷歌翻译
大多数现有的工作在几次学习中,依赖于Meta-Learning网络在大型基础数据集上,该网络通常是与目标数据集相同的域。我们解决了跨域几秒钟的问题,其中基础和目标域之间存在大移位。与未标记的目标数据的跨域几秒识别问题在很大程度上在文献中毫无根据。启动是使用自我训练解决此问题的第一个方法。但是,它使用固定的老师在标记的基础数据集上返回,以为未标记的目标样本创建软标签。由于基本数据集和未标记的数据集来自不同的域,因此将基本数据集的类域中的目标图像投影,具有固定的预制模型可能是子最优的。我们提出了一种简单的动态蒸馏基方法,以方便来自新颖/基础数据集的未标记图像。我们通过从教师网络中的未标记图像的未标记版本的预测计算并将其与来自学生网络相同的相同图像的强大版本匹配来施加一致性正常化。教师网络的参数被更新为学生网络参数的指数移动平均值。我们表明所提出的网络了解可以轻松适应目标域的表示,即使它尚未在预先预测阶段的目标专用类别训练。我们的车型优于当前最先进的方法,在BSCD-FSL基准中的5次分类,3.6%的3.6%,并在传统的域名几枪学习任务中显示出竞争性能。
translated by 谷歌翻译
Knowledge distillation aims at transferring knowledge acquired in one model (a teacher) to another model (a student) that is typically smaller. Previous approaches can be expressed as a form of training the student to mimic output activations of individual data examples represented by the teacher. We introduce a novel approach, dubbed relational knowledge distillation (RKD), that transfers mutual relations of data examples instead. For concrete realizations of RKD, we propose distance-wise and angle-wise distillation losses that penalize structural differences in relations. Experiments conducted on different tasks show that the proposed method improves educated student models with a significant margin. In particular for metric learning, it allows students to outperform their teachers' performance, achieving the state of the arts on standard benchmark datasets.
translated by 谷歌翻译
很少有射击学习(FSL)旨在使用有限标记的示例生成分类器。许多现有的作品采用了元学习方法,构建了一些可以从几个示例中学习以生成分类器的学习者。通常,几次学习者是通过依次对多个几次射击任务进行采样并优化几杆学习者在为这些任务生成分类器时的性能来构建或进行元训练的。性能是通过结果分类器对这些任务的测试(即查询)示例进行分类的程度来衡量的。在本文中,我们指出了这种方法的两个潜在弱点。首先,采样的查询示例可能无法提供足够的监督来进行元训练少数学习者。其次,元学习的有效性随着射击数量的增加而急剧下降。为了解决这些问题,我们为少数学习者提出了一个新颖的元训练目标,这是为了鼓励少数学习者生成像强大分类器一样执行的分类器。具体而言,我们将每个采样的几个弹药任务与强大的分类器相关联,该分类器接受了充分的标记示例。强大的分类器可以看作是目标分类器,我们希望在几乎没有示例的情况下生成的几个学习者,我们使用强大的分类器来监督少数射击学习者。我们提出了一种构建强分类器的有效方法,使我们提出的目标成为现有基于元学习的FSL方法的易于插入的术语。我们与许多代表性的元学习方法相结合验证了我们的方法,Lastshot。在几个基准数据集中,我们的方法可导致各种任务的显着改进。更重要的是,通过我们的方法,基于元学习的FSL方法可以在不同数量的镜头上胜过基于非Meta学习的方法。
translated by 谷歌翻译
少量学习,特别是几秒钟的图像分类,近年来受到了越来越多的关注,并目睹了重大进展。最近的一些研究暗示表明,许多通用技术或“诀窍”,如数据增强,预训练,知识蒸馏和自我监督,可能大大提高了几次学习方法的性能。此外,不同的作品可以采用不同的软件平台,不同的训练计划,不同的骨干架构以及甚至不同的输入图像大小,使得公平的比较困难,从业者与再现性斗争。为了解决这些情况,通过在Pytorch中的同一单个代码库中重新实施17个最新的框架,提出了几次射门学习(Libfewshot)的全面图书馆。此外,基于libfewshot,我们提供多个基准数据集的全面评估,其中包含多个骨干架构,以评估不同培训技巧的常见缺陷和效果。此外,鉴于近期对必要性或未培训机制的必要性怀疑,我们的评估结果表明,特别是当与预训练相结合时,仍然需要这种机制。我们希望我们的工作不仅可以降低初学者的障碍,可以在几次学习上工作,而且还消除了非动力技巧的影响,促进了几枪学习的内在研究。源代码可从https://github.com/rl-vig/libfewshot获取。
translated by 谷歌翻译
基于元学习的现有方法通过从(源域)基础类别的培训任务中学到的元知识来预测(目标域)测试任务的新颖类标签。但是,由于范围内可能存在较大的域差异,大多数现有作品可能无法推广到新颖的类别。为了解决这个问题,我们提出了一种新颖的对抗特征增强(AFA)方法,以弥合域间隙,以几乎没有学习。该特征增强旨在通过最大化域差异来模拟分布变化。在对抗训练期间,通过将增强特征(看不见的域)与原始域(可见域)区分开来学习域歧视器,而将域差异最小化以获得最佳特征编码器。所提出的方法是一个插件模块,可以轻松地基于元学习的方式将其集成到现有的几种学习方法中。在九个数据集上进行的广泛实验证明了我们方法对跨域几乎没有射击分类的优越性,与最新技术相比。代码可从https://github.com/youthhoo/afa_for_few_shot_learning获得
translated by 谷歌翻译
Few-shot learning aims to fast adapt a deep model from a few examples. While pre-training and meta-training can create deep models powerful for few-shot generalization, we find that pre-training and meta-training focuses respectively on cross-domain transferability and cross-task transferability, which restricts their data efficiency in the entangled settings of domain shift and task shift. We thus propose the Omni-Training framework to seamlessly bridge pre-training and meta-training for data-efficient few-shot learning. Our first contribution is a tri-flow Omni-Net architecture. Besides the joint representation flow, Omni-Net introduces two parallel flows for pre-training and meta-training, responsible for improving domain transferability and task transferability respectively. Omni-Net further coordinates the parallel flows by routing their representations via the joint-flow, enabling knowledge transfer across flows. Our second contribution is the Omni-Loss, which introduces a self-distillation strategy separately on the pre-training and meta-training objectives for boosting knowledge transfer throughout different training stages. Omni-Training is a general framework to accommodate many existing algorithms. Evaluations justify that our single framework consistently and clearly outperforms the individual state-of-the-art methods on both cross-task and cross-domain settings in a variety of classification, regression and reinforcement learning problems.
translated by 谷歌翻译
The task of Few-shot learning (FSL) aims to transfer the knowledge learned from base categories with sufficient labelled data to novel categories with scarce known information. It is currently an important research question and has great practical values in the real-world applications. Despite extensive previous efforts are made on few-shot learning tasks, we emphasize that most existing methods did not take into account the distributional shift caused by sample selection bias in the FSL scenario. Such a selection bias can induce spurious correlation between the semantic causal features, that are causally and semantically related to the class label, and the other non-causal features. Critically, the former ones should be invariant across changes in distributions, highly related to the classes of interest, and thus well generalizable to novel classes, while the latter ones are not stable to changes in the distribution. To resolve this problem, we propose a novel data augmentation strategy dubbed as PatchMix that can break this spurious dependency by replacing the patch-level information and supervision of the query images with random gallery images from different classes from the query ones. We theoretically show that such an augmentation mechanism, different from existing ones, is able to identify the causal features. To further make these features to be discriminative enough for classification, we propose Correlation-guided Reconstruction (CGR) and Hardness-Aware module for instance discrimination and easier discrimination between similar classes. Moreover, such a framework can be adapted to the unsupervised FSL scenario.
translated by 谷歌翻译
很少有视觉识别是指从一些标记实例中识别新颖的视觉概念。通过将查询表示形式与类表征进行比较以预测查询实例的类别,许多少数射击的视觉识别方法采用了基于公制的元学习范式。但是,当前基于度量的方法通常平等地对待所有实例,因此通常会获得有偏见的类表示,考虑到并非所有实例在总结了类级表示的实例级表示时都同样重要。例如,某些实例可能包含无代表性的信息,例如过多的背景和无关概念的信息,这使结果偏差。为了解决上述问题,我们提出了一个新型的基于公制的元学习框架,称为实例自适应类别表示网络(ICRL-net),以进行几次视觉识别。具体而言,我们开发了一个自适应实例重新平衡网络,具有在生成班级表示,通过学习和分配自适应权重的不同实例中的自适应权重时,根据其在相应类的支持集中的相对意义来解决偏见的表示问题。此外,我们设计了改进的双线性实例表示,并结合了两个新型的结构损失,即,阶层内实例聚类损失和阶层间表示区分损失,以进一步调节实例重估过程并完善类表示。我们对四个通常采用的几个基准测试:Miniimagenet,Tieredimagenet,Cifar-FS和FC100数据集进行了广泛的实验。与最先进的方法相比,实验结果证明了我们的ICRL-NET的优势。
translated by 谷歌翻译
在这项工作中,我们建议使用分布式样本,即来自目标类别外部的未标记样本,以改善几乎没有记录的学习。具体而言,我们利用易于可用的分布样品来驱动分类器,以避免通过最大化原型到分布样品的距离,同时最大程度地减少分布样品的距离(即支持,查询数据),以避免使用分类器。。我们的方法易于实施,不可知论的是提取器,轻量级,而没有任何额外的预训练费用,并且适用于归纳和跨传输设置。对各种标准基准测试的广泛实验表明,所提出的方法始终提高具有不同架构的预审计网络的性能。
translated by 谷歌翻译
当部署和培训之间存在分配变化时,深层神经网络的性能恶化严重。域的概括(DG)旨在通过仅依靠一组源域来安全地传输模型以看不见目标域。尽管已经提出了各种DG方法,但最近的一项名为Domainbed的研究表明,其中大多数没有超过简单的经验风险最小化(ERM)。为此,我们提出了一个通用框架,该框架与现有的DG算法是正交的,并且可以始终如一地提高其性能。与以前的DG作品不同的是,在静态源模型上有希望成为通用的DG,我们提出的ADAODM会在测试时间适应不同目标域的源模型。具体而言,我们在共享域形式的特征提取器上创建多个域特异性分类器。特征提取器和分类器以对抗性方式进行了训练,其中特征提取器将输入样品嵌入到域不变的空间中,并且多个分类器捕获了每个分类器与特定源域有关的独特决策边界。在测试过程中,可以通过利用源分类器之间的预测分歧来有效地衡量目标和源域之间的分布差异。通过微调源模型以最大程度地减少测试时间的分歧,目标域特征与不变特征空间很好地对齐。我们验证了两种流行的DG方法,即ERM和Coral,以及四个DG基准,即VLCS,PACS,OfficeHome和TerrainCognita。结果表明,ADAODM稳定地提高了对看不见的域的概括能力,并实现了最先进的性能。
translated by 谷歌翻译
Given sufficient training data on the source domain, cross-domain few-shot learning (CD-FSL) aims at recognizing new classes with a small number of labeled examples on the target domain. The key to addressing CD-FSL is to narrow the domain gap and transferring knowledge of a network trained on the source domain to the target domain. To help knowledge transfer, this paper introduces an intermediate domain generated by mixing images in the source and the target domain. Specifically, to generate the optimal intermediate domain for different target data, we propose a novel target guided dynamic mixup (TGDM) framework that leverages the target data to guide the generation of mixed images via dynamic mixup. The proposed TGDM framework contains a Mixup-3T network for learning classifiers and a dynamic ratio generation network (DRGN) for learning the optimal mix ratio. To better transfer the knowledge, the proposed Mixup-3T network contains three branches with shared parameters for classifying classes in the source domain, target domain, and intermediate domain. To generate the optimal intermediate domain, the DRGN learns to generate an optimal mix ratio according to the performance on auxiliary target data. Then, the whole TGDM framework is trained via bi-level meta-learning so that TGDM can rectify itself to achieve optimal performance on target data. Extensive experimental results on several benchmark datasets verify the effectiveness of our method.
translated by 谷歌翻译
Few-shot classification aims to learn a classifier to recognize unseen classes during training with limited labeled examples. While significant progress has been made, the growing complexity of network designs, meta-learning algorithms, and differences in implementation details make a fair comparison difficult. In this paper, we present 1) a consistent comparative analysis of several representative few-shot classification algorithms, with results showing that deeper backbones significantly reduce the performance differences among methods on datasets with limited domain differences, 2) a modified baseline method that surprisingly achieves competitive performance when compared with the state-of-the-art on both the mini-ImageNet and the CUB datasets, and 3) a new experimental setting for evaluating the cross-domain generalization ability for few-shot classification algorithms. Our results reveal that reducing intra-class variation is an important factor when the feature backbone is shallow, but not as critical when using deeper backbones. In a realistic cross-domain evaluation setting, we show that a baseline method with a standard fine-tuning practice compares favorably against other state-of-the-art few-shot learning algorithms.
translated by 谷歌翻译
我们提出了一个统一的查看,即通过通用表示,一个深层神经网络共同学习多个视觉任务和视觉域。同时学习多个问题涉及最大程度地减少具有不同幅度和特征的多个损失函数的加权总和,从而导致一个损失的不平衡状态,与学习每个问题的单独模型相比,一个损失的不平衡状态主导了优化和差的结果。为此,我们提出了通过小容量适配器将多个任务/特定于域网络的知识提炼到单个深神经网络中的知识。我们严格地表明,通用表示在学习NYU-V2和CityScapes中多个密集的预测问题方面实现了最新的表现,来自视觉Decathlon数据集中的不同域中的多个图像分类问题以及MetadataSet中的跨域中的几个域中学习。最后,我们还通过消融和定性研究进行多次分析。
translated by 谷歌翻译
各种预培训模型的涌入通过提供丰富的教师资源来增强知识蒸馏〜(KD)。同时,探索大型模型存储库以选择合适的教师并进一步提取其知识成为艰巨的挑战。当训练学生提供大量预先训练的教师,即“教师”时,标准KD未能克服两个障碍。首先,我们需要有效地寻找教师中最有贡献的老师,而不是为学生列举所有教师。其次,由于教师可能会在W.R.T.的不同任务上进行培训。学生,我们必须从更通用的标签空间中提取知识。本文研究了``教师蒸馏'',学生进行教师评估和广义知识再利用。我们利用最佳运输来为两个问题构建一个统一的目标,该目标弥合了语义差距并测量一对模型之间的相关性。这个目标可以选择最相关的老师,我们将相同的目标最小化,而不是学生参数,以便随后从选定的教师转移知识。在各种环境中的实验证明了我们提出的方法的简洁性和多功能性。
translated by 谷歌翻译
旨在概括在源域中训练的模型来看不见的目标域,域泛化(DG)最近引起了很多关注。 DG的关键问题是如何防止对观察到的源极域的过度接收,因为在培训期间目标域不可用。我们调查过度拟合不仅导致未经看不见的目标域的普遍推广能力,而且在测试阶段导致不稳定的预测。在本文中,我们观察到,在训练阶段采样多个任务并在测试阶段产生增强图像,很大程度上有利于泛化性能。因此,通过处理不同视图的任务和图像,我们提出了一种新颖的多视图DG框架。具体地,在训练阶段,为了提高泛化能力,我们开发了一种多视图正则化元学习算法,该算法采用多个任务在更新模型期间产生合适的优化方向。在测试阶段,为了减轻不稳定的预测,我们利用多个增强图像来产生多视图预测,这通过熔断测试图像的不同视图的结果显着促进了模型可靠性。三个基准数据集的广泛实验验证了我们的方法优于几种最先进的方法。
translated by 谷歌翻译
半监督域适应(SSDA)是将学习者调整到新域,只有一小组标记的数据集在源域上给出时,只有一小组标记的样本。在本文中,我们提出了一种基于对的SSDA方法,使用用样品对的自蒸馏来适应靶域的模型。每个样本对由来自标记数据集(即源或标记为目标)的教师样本以及来自未标记数据集的学生样本(即,未标记的目标)组成。我们的方法通过在教师和学生之间传输中间样式来生成助手功能,然后通过最小化学生和助手之间的输出差异来培训模型。在培训期间,助手逐渐弥合了两个域之间的差异,从而让学生容易地从老师那里学习。标准基准测试的实验评估表明,我们的方法有效地减少了域间和域内的差异,从而实现了对最近的方法的显着改进。
translated by 谷歌翻译
在过去的十年中,许多深入学习模型都受到了良好的培训,并在各种机器智能领域取得了巨大成功,特别是对于计算机视觉和自然语言处理。为了更好地利用这些训练有素的模型在域内或跨域转移学习情况下,提出了知识蒸馏(KD)和域适应(DA)并成为研究亮点。他们旨在通过原始培训数据从训练有素的模型转移有用的信息。但是,由于隐私,版权或机密性,原始数据并不总是可用的。最近,无数据知识转移范式吸引了吸引人的关注,因为它涉及从训练有素的模型中蒸馏宝贵的知识,而无需访问培训数据。特别是,它主要包括无数据知识蒸馏(DFKD)和源无数据域适应(SFDA)。一方面,DFKD旨在将域名域内知识从一个麻烦的教师网络转移到一个紧凑的学生网络,以进行模型压缩和有效推论。另一方面,SFDA的目标是重用存储在训练有素的源模型中的跨域知识并将其调整为目标域。在本文中,我们对知识蒸馏和无监督域适应的视角提供了全面的数据知识转移,以帮助读者更好地了解目前的研究状况和想法。分别简要审查了这两个领域的应用和挑战。此外,我们对未来研究的主题提供了一些见解。
translated by 谷歌翻译
近年来,研究人员越来越关注几次拍摄学习(FSL)任务,以解决数据稀缺问题。标准FSL框架由两个组件组成:i)预先列车。采用基础数据以生成基于CNN的特征提取模型(FEM)。 ii)Meta-Test。将培训的有关应用于新颖的数据(类别与基本数据不同)以获取特征嵌入物并识别它们。虽然研究人员在FSL中取得了显着突破,但仍然存在根本问题。由于具有基础数据的训练有素的有限元通常不能完美地适应新颖的类,因此新的数据的特征可能导致分布换档问题。为了解决这一挑战,我们假设即使基于不同FEMS的大多数决策被视为\ Texit {弱决策},它们也不适用于所有类别,它们仍然在某些特定类别中仍然变得恰到貌。灵感来自这种假设,我们提出了一种新颖的方法多决定定影模型(MDFM),其基于多个FEMS全面地考虑了模拟的决策,以提高模型的功效和鲁棒性。 MDFM是一种简单,灵活的非参数方法,可直接适用于现有的FEM。此外,我们将所提出的MDFM扩展到两个FSL设置(即,监督和半监督设置)。我们在五个基准数据集中评估所提出的方法,与最先进的3.4%-7.3 \%的显着改善。
translated by 谷歌翻译