在我们的框架中,一个对象由k个不同的零件或单位组成,我们通过推断k零件来解析测试实例,其中每个零件在特征空间中占据着不同的位置,并且该实例在此位置,表现为零件模板的主动子集在所有实例中共享。我们通过比较其活性模板及其零件位置的相对几何形状与所呈现的几个实例的相对几何形状来识别测试实例。我们提出了一种端到端训练方法,以在卷积主链上学习零件模板。为了打击视觉失真,例如方向,姿势和大小,我们学习多尺度模板,以及在测试时间分析和匹配这些量表的实例。我们表明,我们的方法与最先进的方法具有竞争力,并且由于解析也具有解释性。
translated by 谷歌翻译
识别诸如眼睛和喙之类的判别细节对于区分细粒度的班级非常重要,因为它们的总体外观相似。在这方面,我们介绍了任务差异最大化(TDM),这是一个简单的模块,用于细颗粒的几个射击分类。我们的目标是通过强调编码课堂不同信息的渠道来定位班级判别区域。具体而言,TDM基于两个新颖的组件学习特定于任务的通道权重:支持注意模块(SAM)和查询注意模块(QAM)。 SAM产生支持权重,以表示每个类别的频道判别能力。尽管如此,由于SAM基本上仅基于标记的支持集,因此它可能容易受到此类支持集的偏见。因此,我们提出了QAM,通过产生查询权重来补充SAM,该查询权重使给定查询图像的对象相关的通道更加重量。通过组合这两个权重,定义了特定于类的任务通道权重。然后将权重应用以产生任务自适应特征地图,更多地关注判别细节。我们的实验证实了TDM的有效性及其互补益处,并在细粒度的几乎没有分类中使用了先前的方法。
translated by 谷歌翻译
很少有细粒度的分类和人搜索作为独特的任务和文学作品,已经分别对待了它们。但是,仔细观察揭示了重要的相似之处:这两个任务的目标类别只能由特定的对象细节歧视;相关模型应概括为新类别,而在培训期间看不到。我们提出了一个适用于这两个任务的新型统一查询引导网络(QGN)。QGN由一个查询引导的暹罗引文和兴奋子网组成,该子网还重新进行了所有网络层的查询和画廊功能,一个查询实习的区域建议特定于特定于特定的本地化以及查询指导的相似性子网络子网本网络用于公制学习。QGN在最近的一些少数细颗粒数据集上有所改善,在幼崽上的其他技术优于大幅度。QGN还对人搜索Cuhk-Sysu和PRW数据集进行了竞争性执行,我们在其中进行了深入的分析。
translated by 谷歌翻译
很少有学习的学习(FSL)旨在学习一个可以轻松适应新颖课程的分类器,只有几个标签的示例,限制数据使这项任务挑战深度学习。基于量子指标的方法已实现了有希望的表现基于图像级的功能。但是,这些全球特征忽略了丰富的本地和结构信息,这些信息在可见的和看不见的类之间都是可以转移和一致的。认知科学的某些研究认为,人类可以识别出具有学识渊博的新颖类。我们希望挖掘出来可以从基础类别转移和判别性表示,并采用它们以识别新的课程。建立情节训练机制,我们提出了一个原始的采矿和推理网络(PMRN),以端到端的方式学习原始感知的表示,以进行度量。基于基于FSL模型。我们首先添加自学辅助任务,迫使功能提取器学习与原始词相对应的电视模式。为了进一步挖掘并产生可转移的原始感知表示形式,我们设计了一个自适应通道组(ACG)模块,以通过增强信息通道图的同时抑制无用的通道图,从而从对象嵌入中合成一组视觉原语。基于学到的原始功能,提出了一个语义相关推理(SCR)模块来捕获它们之间的内部关系。在本文中,我们了解原始词的特定于任务的重要性,并基于特定于任务的注意力功能进行原始级别的度量。广泛的实验表明,我们的方法在六个标准基准下实现了最先进的结果。
translated by 谷歌翻译
传统的细颗粒图像分类通常依赖于带注释的地面真相的大规模训练样本。但是,某些子类别在实际应用中可能几乎没有可用的样本。在本文中,我们建议使用多频邻域(MFN)和双交叉调制(DCM)提出一个新颖的几弹性细颗粒图像分类网络(FICNET)。采用模块MFN来捕获空间域和频域中的信息。然后,提取自相似性和多频成分以产生多频结构表示。 DCM使用分别考虑全球环境信息和类别之间的微妙关系来调节嵌入过程。针对两个少量任务的三个细粒基准数据集进行的综合实验验证了FICNET与最先进的方法相比具有出色的性能。特别是,在两个数据集“ Caltech-UCSD鸟”和“ Stanford Cars”上进行的实验分别可以获得分类精度93.17 \%和95.36 \%。它们甚至高于一般的细粒图像分类方法可以实现的。
translated by 谷歌翻译
很少有视觉识别是指从一些标记实例中识别新颖的视觉概念。通过将查询表示形式与类表征进行比较以预测查询实例的类别,许多少数射击的视觉识别方法采用了基于公制的元学习范式。但是,当前基于度量的方法通常平等地对待所有实例,因此通常会获得有偏见的类表示,考虑到并非所有实例在总结了类级表示的实例级表示时都同样重要。例如,某些实例可能包含无代表性的信息,例如过多的背景和无关概念的信息,这使结果偏差。为了解决上述问题,我们提出了一个新型的基于公制的元学习框架,称为实例自适应类别表示网络(ICRL-net),以进行几次视觉识别。具体而言,我们开发了一个自适应实例重新平衡网络,具有在生成班级表示,通过学习和分配自适应权重的不同实例中的自适应权重时,根据其在相应类的支持集中的相对意义来解决偏见的表示问题。此外,我们设计了改进的双线性实例表示,并结合了两个新型的结构损失,即,阶层内实例聚类损失和阶层间表示区分损失,以进一步调节实例重估过程并完善类表示。我们对四个通常采用的几个基准测试:Miniimagenet,Tieredimagenet,Cifar-FS和FC100数据集进行了广泛的实验。与最先进的方法相比,实验结果证明了我们的ICRL-NET的优势。
translated by 谷歌翻译
The task of Few-shot learning (FSL) aims to transfer the knowledge learned from base categories with sufficient labelled data to novel categories with scarce known information. It is currently an important research question and has great practical values in the real-world applications. Despite extensive previous efforts are made on few-shot learning tasks, we emphasize that most existing methods did not take into account the distributional shift caused by sample selection bias in the FSL scenario. Such a selection bias can induce spurious correlation between the semantic causal features, that are causally and semantically related to the class label, and the other non-causal features. Critically, the former ones should be invariant across changes in distributions, highly related to the classes of interest, and thus well generalizable to novel classes, while the latter ones are not stable to changes in the distribution. To resolve this problem, we propose a novel data augmentation strategy dubbed as PatchMix that can break this spurious dependency by replacing the patch-level information and supervision of the query images with random gallery images from different classes from the query ones. We theoretically show that such an augmentation mechanism, different from existing ones, is able to identify the causal features. To further make these features to be discriminative enough for classification, we propose Correlation-guided Reconstruction (CGR) and Hardness-Aware module for instance discrimination and easier discrimination between similar classes. Moreover, such a framework can be adapted to the unsupervised FSL scenario.
translated by 谷歌翻译
很少有细粒度的学习旨在将查询图像分类为具有细粒度差异的一组支持类别之一。尽管学习不同对象通过深神网络的局部差异取得了成功,但如何在基于变压器的架构中利用查询支持的跨图像对象语义关系在几个摄像机的细粒度场景中仍未得到充分探索。在这项工作中,我们提出了一个基于变压器的双螺旋模型,即HelixFormer,以双向和对称方式实现跨图像对象语义挖掘。 HelixFormer由两个步骤组成:1)跨不同分支的关系挖掘过程(RMP),以及2)在每个分支中表示增强过程(REP)。通过设计的RMP,每个分支都可以使用来自另一个分支的信息提取细粒对象级跨图义语义关系图(CSRMS),从而确保在语义相关的本地对象区域中更好地跨图像相互作用。此外,借助CSRMS,开发的REP可以增强每个分支中发现的与语义相关的局部区域的提取特征,从而增强模型区分细粒物体的细微特征差异的能力。在五个公共细粒基准上进行的广泛实验表明,螺旋形式可以有效地增强识别细颗粒物体的跨图像对象语义关系匹配,从而在1次以下的大多数先进方法中实现更好的性能,并且5击场景。我们的代码可在以下网址找到:https://github.com/jiakangyuan/helixformer
translated by 谷歌翻译
少量学习是一个基本和挑战性的问题,因为它需要识别只有几个例子的新型类别。识别对象具有多个变体,可以定位图像中的任何位置。直接将查询图像与示例图像进行比较无法处理内容未对准。比较的表示和度量是至关重要的,但由于在几次拍摄学习中的样本的稀缺和广泛变化而挑战。在本文中,我们提出了一种新颖的语义对齐模型来比较关系,这是对内容未对准的强大。我们建议为现有的几次射门学习框架添加两个关键成分,以获得更好的特征和度量学习能力。首先,我们介绍了语义对齐损失,以对准属于同一类别的样本的功能的关系统计。其次,引入了本地和全局互动信息,允许在图像中的结构位置包含本地一致和类别共享信息的表示。第三,我们通过考虑每个流的同性恋的不确定性来介绍一个原则的方法来称量多重损失功能。我们对几个几次拍摄的学习数据集进行了广泛的实验。实验结果表明,该方法能够比较与语义对准策略的关系,实现最先进的性能。
translated by 谷歌翻译
很少有图像分类是一个具有挑战性的问题,旨在仅基于少量培训图像来达到人类的识别水平。少数图像分类的一种主要解决方案是深度度量学习。这些方法是,通过将看不见的样本根据距离的距离进行分类,可在强大的深神经网络中学到的嵌入空间中看到的样品,可以避免以少数图像分类的少数训练图像过度拟合,并实现了最新的图像表现。在本文中,我们提供了对深度度量学习方法的最新审查,以进行2018年至2022年的少量图像分类,并根据度量学习的三个阶段将它们分为三组,即学习功能嵌入,学习课堂表示和学习距离措施。通过这种分类法,我们确定了他们面临的不同方法和问题的新颖性。我们通过讨论当前的挑战和未来趋势进行了少量图像分类的讨论。
translated by 谷歌翻译
Few-shot image classification consists of two consecutive learning processes: 1) In the meta-learning stage, the model acquires a knowledge base from a set of training classes. 2) During meta-testing, the acquired knowledge is used to recognize unseen classes from very few examples. Inspired by the compositional representation of objects in humans, we train a neural network architecture that explicitly represents objects as a dictionary of shared components and their spatial composition. In particular, during meta-learning, we train a knowledge base that consists of a dictionary of component representations and a dictionary of component activation maps that encode common spatial activation patterns of components. The elements of both dictionaries are shared among the training classes. During meta-testing, the representation of unseen classes is learned using the component representations and the component activation maps from the knowledge base. Finally, an attention mechanism is used to strengthen those components that are most important for each category. We demonstrate the value of our interpretable compositional learning framework for a few-shot classification using miniImageNet, tieredImageNet, CIFAR-FS, and FC100, where we achieve comparable performance.
translated by 谷歌翻译
很少有开放式识别旨在对可见类别的培训数据进行有限的培训数据进行分类和新颖的图像。这项任务的挑战是,该模型不仅需要学习判别性分类器,以用很少的培训数据对预定的类进行分类,而且还要拒绝从未见过的培训时间出现的未见类别的输入。在本文中,我们建议从两个新方面解决问题。首先,我们没有像在标准的封闭设置分类中那样学习看到类之间的决策边界,而是为看不见的类保留空间,因此位于这些区域中的图像被认为是看不见的类。其次,为了有效地学习此类决策边界,我们建议利用所见类的背景功能。由于这些背景区域没有显着促进近距离分类的决定,因此自然地将它们用作分类器学习的伪阶层。我们的广泛实验表明,我们提出的方法不仅要优于多个基线,而且还为三个流行的基准测试(即Tieredimagenet,Miniimagenet和Caltech-uscd Birds-birds-2011-2011(Cub))设定了新的最先进结果。
translated by 谷歌翻译
学习和概括与少数样本(少量学习)的新概念仍然是对现实世界应用的重要挑战。实现少量学习的原则方法是实现一种可以快速适应给定任务的上下文的模型。已经显示动态网络能够有效地学习内容自适应参数,使其适用于几次学习。在本文中,我们建议将卷积网络的动态内核作为手掌的任务的函数学习,从而实现更快的泛化。为此,我们基于整个任务和每个样本获得我们的动态内核,并在每个单独的频道和位置进行进一步调节机制。这导致动态内核,同时考虑可用的微型信息。我们经验证明,我们的模型在几次拍摄分类和检测任务上提高了性能,实现了几种基线模型的切实改进。这包括最先进的结果,以4次拍摄分类基准:迷你想象,分层 - 想象成,幼崽和FC100以及少量检测数据集的竞争结果:Coco-Pascal-VOC。
translated by 谷歌翻译
可以通过对手动预定义目标的监督(例如,一hot或Hadamard代码)进行深入的表示学习来解决细粒度的视觉分类。这种目标编码方案对于模型间相关性的灵活性较小,并且对稀疏和不平衡的数据分布也很敏感。鉴于此,本文介绍了一种新颖的目标编码方案 - 动态目标关系图(DTRG),作为辅助特征正则化,是一个自生成的结构输出,可根据输入图像映射。具体而言,类级特征中心的在线计算旨在在表示空间中生成跨类别距离,因此可以通过非参数方式通过动态图来描绘。明确最大程度地减少锚定在这些级别中心的阶层内特征变化可以鼓励学习判别特征。此外,由于利用了类间的依赖性,提出的目标图可以减轻代表学习中的数据稀疏性和不稳定。受混合风格数据增强的最新成功的启发,本文将随机性引入了动态目标关系图的软结构,以进一步探索目标类别的关系多样性。实验结果可以证明我们方法对多个视觉分类任务的许多不同基准的有效性,尤其是在流行的细粒对象基准上实现最先进的性能以及针对稀疏和不平衡数据的出色鲁棒性。源代码可在https://github.com/akonlau/dtrg上公开提供。
translated by 谷歌翻译
Learning with limited data is a key challenge for visual recognition. Many few-shot learning methods address this challenge by learning an instance embedding function from seen classes and apply the function to instances from unseen classes with limited labels. This style of transfer learning is task-agnostic: the embedding function is not learned optimally discriminative with respect to the unseen classes, where discerning among them leads to the target task. In this paper, we propose a novel approach to adapt the instance embeddings to the target classification task with a set-to-set function, yielding embeddings that are task-specific and are discriminative. We empirically investigated various instantiations of such set-to-set functions and observed the Transformer is most effective -as it naturally satisfies key properties of our desired model. We denote this model as FEAT (few-shot embedding adaptation w/ Transformer) and validate it on both the standard few-shot classification benchmark and four extended few-shot learning settings with essential use cases, i.e., cross-domain, transductive, generalized few-shot learning, and low-shot learning. It archived consistent improvements over baseline models as well as previous methods, and established the new stateof-the-art results on two benchmarks.
translated by 谷歌翻译
基于度量学习的最近方法取得了很大镜头学习的巨大进步。然而,大多数人都仅限于图像级表示方式,这不能正确地处理课外变化和空间知识,从而产生不希望的性能。在本文中,我们提出了一个深度偏置纠正网络(DBRN)来充分利用特征表示结构中存在的空间信息。我们首先采用偏置整流模块来缓解由类内变化引起的不利影响。偏置纠正模块能够专注于通过给定不同权重的对分类更具判别的特征。为了充分利用培训数据,我们设计了一种模拟增强机制,可以使从支架组产生的原型更具代表性。为了验证我们方法的有效性,我们对各种流行的几次分类基准进行了广泛的实验,我们的方法可以优于最先进的方法。
translated by 谷歌翻译
细粒度的图像分析(FGIA)是计算机视觉和模式识别中的长期和基本问题,并为一组多种现实世界应用提供了基础。 FGIA的任务是从属类别分析视觉物体,例如汽车或汽车型号的种类。细粒度分析中固有的小阶级和阶级阶级内变异使其成为一个具有挑战性的问题。利用深度学习的进步,近年来,我们在深入学习动力的FGIA中见证了显着进展。在本文中,我们对这些进展的系统进行了系统的调查,我们试图通过巩固两个基本的细粒度研究领域 - 细粒度的图像识别和细粒度的图像检索来重新定义和扩大FGIA领域。此外,我们还审查了FGIA的其他关键问题,例如公开可用的基准数据集和相关域的特定于应用程序。我们通过突出几个研究方向和开放问题,从社区中突出了几个研究方向和开放问题。
translated by 谷歌翻译
少量分类旨在通过一些培训样本来调整小型课程的分类器。然而,训练数据的不足可能导致某个类中的特征分布偏差估计。为了缓解这个问题,我们通过探索新颖和基类之间的类别相关性,作为先前知识来展示一个简单而有效的功能整流方法。我们通过将特征映射到潜在的向量中明确地捕获这种相关性,其中匹配基类的数量的维度,将其视为在基类上的特征的对数概率。基于该潜伏向量,整流特征由解码器直接构建,我们预计在去除其他随机因素的同时保持与类别相关的信息,因此更接近其类心。此外,通过改变SoftMax中的温度值,我们可以重新平衡特征整流和重建以获得更好的性能。我们的方法是通用的,灵活的,不可知的任何特征提取器和分类器,容易嵌入到现有的FSL方法中。实验验证了我们的方法能够整流偏置功能,尤其是当特征远离班级质心时。拟议的方法一直在三种广泛使用的基准上获得相当大的性能收益,用不同的骨干和分类器评估。该代码将公开。
translated by 谷歌翻译
我们通过无监督学习的角度探索语义对应估计。我们使用标准化的评估协议彻底评估了最近提出的几种跨多个挑战数据集的无监督方法,在该协议中,我们会改变诸如骨干架构,预训练策略以及预训练和填充数据集等因素。为了更好地了解这些方法的故障模式,并为了提供更清晰的改进途径,我们提供了一个新的诊断框架以及一个新的性能指标,该指标更适合于语义匹配任务。最后,我们引入了一种新的无监督的对应方法,该方法利用了预训练的功能的强度,同时鼓励在训练过程中进行更好的比赛。与当前的最新方法相比,这会导致匹配性能明显更好。
translated by 谷歌翻译
We propose prototypical networks for the problem of few-shot classification, where a classifier must generalize to new classes not seen in the training set, given only a small number of examples of each new class. Prototypical networks learn a metric space in which classification can be performed by computing distances to prototype representations of each class. Compared to recent approaches for few-shot learning, they reflect a simpler inductive bias that is beneficial in this limited-data regime, and achieve excellent results. We provide an analysis showing that some simple design decisions can yield substantial improvements over recent approaches involving complicated architectural choices and meta-learning. We further extend prototypical networks to zero-shot learning and achieve state-of-theart results on the CU-Birds dataset.
translated by 谷歌翻译