视觉世界中新对象的不断出现对现实世界部署中当前的深度学习方法构成了巨大的挑战。由于稀有性或成本,新任务学习的挑战通常会加剧新类别的数据。在这里,我们探讨了几乎没有类别学习的重要任务(FSCIL)及其极端数据稀缺条件。理想的FSCIL模型都需要在所有类别上表现良好,无论其显示顺序或数据的匮乏。开放式现实世界条件也需要健壮,并可以轻松地适应始终在现场出现的新任务。在本文中,我们首先重新评估当前的任务设置,并为FSCIL任务提出更全面和实用的设置。然后,受到FSCIL和现代面部识别系统目标的相似性的启发,我们提出了我们的方法 - 增强角损失渐进分类或爱丽丝。在爱丽丝(Alice)中,我们建议使用角度损失损失来获得良好的特征。由于所获得的功能不仅需要紧凑,而且还需要足够多样化以维持未来的增量类别的概括,我们进一步讨论了类增强,数据增强和数据平衡如何影响分类性能。在包括CIFAR100,Miniimagenet和Cub200在内的基准数据集上的实验证明了爱丽丝在最新的FSCIL方法上的性能提高。
translated by 谷歌翻译
新课程经常出现在我们不断变化的世界中,例如社交媒体中的新兴主题和电子商务中的新产品。模型应识别新的类,同时保持对旧类的可区分性。在严重的情况下,只有有限的新颖实例可以逐步更新模型。在不忘记旧课程的情况下识别几个新课程的任务称为少数类的课程学习(FSCIL)。在这项工作中,我们通过学习多相增量任务(limit)提出了一个基于元学习的FSCIL的新范式,该任务从基本数据集中综合了伪造的FSCIL任务。假任务的数据格式与“真实”的增量任务一致,我们可以通过元学习构建可概括的特征空间。此外,限制还基于变压器构建了一个校准模块,该模块将旧类分类器和新类原型校准为相同的比例,并填补语义间隙。校准模块还可以自适应地将具有设置对集合函数的特定于实例的嵌入方式化。限制有效地适应新课程,同时拒绝忘记旧课程。在三个基准数据集(CIFAR100,Miniimagenet和Cub200)和大规模数据集上进行的实验,即Imagenet ILSVRC2012验证以实现最新性能。
translated by 谷歌翻译
几乎没有类似的课堂学习(FSCIL)旨在通过避免过度拟合和灾难性遗忘,从一些标记的样本中逐步学习新颖的课程。 FSCIL的当前协议是通过模仿一般类知识学习设置来构建的,而由于不同的数据配置,即新颖的类都在有限的数据状态下,因此并不完全合适。在本文中,我们通过保留第一个会话的可能性来重新考虑FSCIL对开放式假设的配置。为了为模型分配更好的近距离和开放式识别性能,双曲线相互学习模块(Hyper-RPL)建立在与双曲神经网络的相互点学习(RPL)上。此外,为了从有限标记的数据中学习新颖类别,我们将双曲线度量学习(超级现象)模块纳入基于蒸馏的框架中,以减轻过度拟合的问题,并更好地处理保存旧知识和旧知识之间的权衡问题。获得新知识。对三个基准数据集上提出的配置和模块的全面评估被执行,以验证有关三个评估指标的有效性。
translated by 谷歌翻译
很少有课堂学习(FSCIL)旨在仅用几个样本不断学习新概念,这很容易遭受灾难性的遗忘和过度拟合的问题。旧阶级的无法获得性和新颖样本的稀缺性使实现保留旧知识和学习新颖概念之间的权衡很大。受到不同模型的启发,我们在学习新颖概念时记住了不同的知识,我们提出了一个记忆的补充网络(MCNET),以整合多个模型,以在新任务中相互补充不同的记忆知识。此外,为了用很少的新样本更新模型,我们开发了一个原型平滑的硬矿三元组(PSHT)损失,以将新型样品不仅在当前任务中彼此远离,而且在旧分布中脱颖而出。在三个基准数据集(例如CIFAR100,Miniimagenet和Cub200)上进行了广泛的实验,证明了我们提出的方法的优势。
translated by 谷歌翻译
Many modern computer vision algorithms suffer from two major bottlenecks: scarcity of data and learning new tasks incrementally. While training the model with new batches of data the model looses it's ability to classify the previous data judiciously which is termed as catastrophic forgetting. Conventional methods have tried to mitigate catastrophic forgetting of the previously learned data while the training at the current session has been compromised. The state-of-the-art generative replay based approaches use complicated structures such as generative adversarial network (GAN) to deal with catastrophic forgetting. Additionally, training a GAN with few samples may lead to instability. In this work, we present a novel method to deal with these two major hurdles. Our method identifies a better embedding space with an improved contrasting loss to make classification more robust. Moreover, our approach is able to retain previously acquired knowledge in the embedding space even when trained with new classes. We update previous session class prototypes while training in such a way that it is able to represent the true class mean. This is of prime importance as our classification rule is based on the nearest class mean classification strategy. We have demonstrated our results by showing that the embedding space remains intact after training the model with new classes. We showed that our method preformed better than the existing state-of-the-art algorithms in terms of accuracy across different sessions.
translated by 谷歌翻译
深度学习模型在逐步学习新任务时遭受灾难性遗忘。已经提出了增量学习,以保留旧课程的知识,同时学习识别新课程。一种典型的方法是使用一些示例来避免忘记旧知识。在这种情况下,旧类和新课之间的数据失衡是导致模型性能下降的关键问题。由于数据不平衡,已经设计了几种策略来纠正新类别的偏见。但是,他们在很大程度上依赖于新旧阶层之间偏见关系的假设。因此,它们不适合复杂的现实世界应用。在这项研究中,我们提出了一种假设不足的方法,即多粒性重新平衡(MGRB),以解决此问题。重新平衡方法用于减轻数据不平衡的影响;但是,我们从经验上发现,他们将拟合新的课程。为此,我们进一步设计了一个新颖的多晶正式化项,该项使模型还可以考虑除了重新平衡数据之外的类别的相关性。类层次结构首先是通过将语义或视觉上类似类分组来构建的。然后,多粒性正则化将单热标签向量转换为连续的标签分布,这反映了基于构造的类层次结构的目标类别和其他类之间的关系。因此,该模型可以学习类间的关系信息,这有助于增强新旧课程的学习。公共数据集和现实世界中的故障诊断数据集的实验结果验证了所提出的方法的有效性。
translated by 谷歌翻译
很少有人提出了几乎没有阶级的课程学习(FSCIL),目的是使深度学习系统能够逐步学习有限的数据。最近,一位先驱声称,通常使用的基于重播的课堂学习方法(CIL)是无效的,因此对于FSCIL而言并不是首选。如果真理,这对FSCIL领域产生了重大影响。在本文中,我们通过经验结果表明,采用数据重播非常有利。但是,存储和重播旧数据可能会导致隐私问题。为了解决此问题,我们或建议使用无数据重播,该重播可以通过发电机综合数据而无需访问真实数据。在观察知识蒸馏的不确定数据的有效性时,我们在发电机培训中强加了熵正则化,以鼓励更不确定的例子。此外,我们建议使用单速样标签重新标记生成的数据。这种修改使网络可以通过完全减少交叉渗透损失来学习,从而减轻了在常规知识蒸馏方法中平衡不同目标的问题。最后,我们对CIFAR-100,Miniimagenet和Cub-200展示了广泛的实验结果和分析,以证明我们提出的效果。
translated by 谷歌翻译
Conventionally, deep neural networks are trained offline, relying on a large dataset prepared in advance. This paradigm is often challenged in real-world applications, e.g. online services that involve continuous streams of incoming data. Recently, incremental learning receives increasing attention, and is considered as a promising solution to the practical challenges mentioned above. However, it has been observed that incremental learning is subject to a fundamental difficulty -catastrophic forgetting, namely adapting a model to new data often results in severe performance degradation on previous tasks or classes. Our study reveals that the imbalance between previous and new data is a crucial cause to this problem. In this work, we develop a new framework for incrementally learning a unified classifier, i.e. a classifier that treats both old and new classes uniformly. Specifically, we incorporate three components, cosine normalization, less-forget constraint, and inter-class separation, to mitigate the adverse effects of the imbalance. Experiments show that the proposed method can effectively rebalance the training process, thus obtaining superior performance compared to the existing methods. On CIFAR-100 and ImageNet, our method can reduce the classification errors by more than 6% and 13% respectively, under the incremental setting of 10 phases.
translated by 谷歌翻译
很少有课堂学习(FSCIL)着重于设计学习算法,这些学习算法可以不断地从几个样本中学习一系列新任务,而不会忘记旧任务。困难是,从新任务中进行一系列有限数据的培训会导致严重的过度拟合问题,并导致众所周知的灾难性遗忘问题。现有研究主要利用图像信息,例如存储以前任务的图像知识或限制分类器更新。但是,他们忽略了分析课堂标签的信息丰富且较少的嘈杂文本信息。在这项工作中,我们建议通过采用内存提示来利用标签文本信息。内存提示可以依次学习新数据,同时存储先前的知识。此外,为了优化内存提示而不破坏存储的知识,我们提出了基于刺激的训练策略。它根据图像嵌入刺激(即嵌入元素的分布)来优化内存提示。实验表明,我们提出的方法的表现优于所有先前的最新方法,从而大大减轻了灾难性的遗忘和过度拟合问题。
translated by 谷歌翻译
本文解决了新型类别发现(NCD)的问题,该问题旨在区分大规模图像集中的未知类别。 NCD任务由于与现实世界情景的亲密关系而具有挑战性,我们只遇到了一些部分类和图像。与NCD上的其他作品不同,我们利用原型强调类别歧视的重要性,并减轻缺少新颖阶级注释的问题。具体而言,我们提出了一种新型的适应性原型学习方法,该方法由两个主要阶段组成:原型表示学习和原型自我训练。在第一阶段,我们获得了一个可靠的特征提取器,该功能提取器可以为所有具有基础和新颖类别的图像提供。该功能提取器的实例和类别歧视能力通过自我监督的学习和适应性原型来提高。在第二阶段,我们再次利用原型来整理离线伪标签,并训练类别聚类的最终参数分类器。我们对四个基准数据集进行了广泛的实验,并证明了该方法具有最先进的性能的有效性和鲁棒性。
translated by 谷歌翻译
Although deep learning approaches have stood out in recent years due to their state-of-the-art results, they continue to suffer from catastrophic forgetting, a dramatic decrease in overall performance when training with new classes added incrementally. This is due to current neural network architectures requiring the entire dataset, consisting of all the samples from the old as well as the new classes, to update the model-a requirement that becomes easily unsustainable as the number of classes grows. We address this issue with our approach to learn deep neural networks incrementally, using new data and only a small exemplar set corresponding to samples from the old classes. This is based on a loss composed of a distillation measure to retain the knowledge acquired from the old classes, and a cross-entropy loss to learn the new classes. Our incremental training is achieved while keeping the entire framework end-to-end, i.e., learning the data representation and the classifier jointly, unlike recent methods with no such guarantees. We evaluate our method extensively on the CIFAR-100 and Im-ageNet (ILSVRC 2012) image classification datasets, and show state-of-the-art performance.
translated by 谷歌翻译
受到正规彩票假说(RLTH)的启发,该假说假设在密集网络中存在平稳(非二进制)子网,以实现密集网络的竞争性能,我们提出了几个播放类增量学习(FSCIL)方法。 to as \ emph {soft-subnetworks(softnet)}。我们的目标是逐步学习一系列会议,每个会议在每个课程中只包含一些培训实例,同时保留了先前学到的知识。软网络在基本训练会议上共同学习模型权重和自适应非二进制软面具,每个面具由主要和次要子网组成;前者的目的是最大程度地减少训练期间的灾难性遗忘,而后者的目的是避免在每个新培训课程中过度拟合一些样本。我们提供了全面的经验验证,表明我们的软网络通过超越基准数据集的最先进基准的性能来有效地解决了几个弹药的学习问题。
translated by 谷歌翻译
很少有射击学习(FSL)由于其在模型训练中的能力而无需过多的数据而引起了计算机视觉的越来越多的关注。 FSL具有挑战性,因为培训和测试类别(基础与新颖集)可能会在很大程度上多样化。传统的基于转移的解决方案旨在将从大型培训集中学到的知识转移到目标测试集中是有限的,因为任务分配转移的关键不利影响没有充分解决。在本文中,我们通过结合度量学习和通道注意的概念扩展了基于转移方法的解决方案。为了更好地利用特征主链提取的特征表示,我们提出了特定于类的通道注意(CSCA)模块,该模块通过分配每个类别的CSCA权重向量来学会突出显示每个类中的判别通道。与旨在学习全球班级功能的一般注意力模块不同,CSCA模块旨在通过非常有效的计算来学习本地和特定的特定功能。我们评估了CSCA模块在标准基准测试中的性能,包括Miniimagenet,Cifar-imagenet,Cifar-FS和Cub-200-200-2011。实验在电感和/跨域设置中进行。我们取得了新的最新结果。
translated by 谷歌翻译
基于正规化的方法有利于缓解类渐进式学习中的灾难性遗忘问题。由于缺乏旧任务图像,如果分类器在新图像上产生类似的输出,它们通常会假设旧知识得到很好的保存。在本文中,我们发现他们的效果很大程度上取决于旧课程的性质:它们在彼此之间容易区分的课程上工作,但可能在更细粒度的群体上失败,例如,男孩和女孩。在SPIRIT中,此类方法将新数据项目投入到完全连接层中的权重向量中跨越的特征空间,对应于旧类。由此产生的预测在细粒度的旧课程上是相似的,因此,新分类器将逐步失去这些课程的歧视能力。为了解决这个问题,我们提出了一种无记忆生成的重播策略,通过直接从旧分类器生成代表性的旧图像并结合新的分类器培训的新数据来保留细粒度的旧阶级特征。为了解决所产生的样本的均化问题,我们还提出了一种分集体损失,使得产生的样品之间的Kullback Leibler(KL)发散。我们的方法最好是通过先前的基于正规化的方法补充,证明是为了易于区分的旧课程有效。我们验证了上述关于CUB-200-2011,CALTECH-101,CIFAR-100和微小想象的设计和见解,并表明我们的策略优于现有的无记忆方法,并具有清晰的保证金。代码可在https://github.com/xmengxin/mfgr获得
translated by 谷歌翻译
在学习新知识时,班级学习学习(CIL)与灾难性遗忘和无数据CIL(DFCIL)的斗争更具挑战性,而无需访问以前学过的课程的培训数据。尽管最近的DFCIL作品介绍了诸如模型反转以合成以前类的数据,但由于合成数据和真实数据之间的严重域间隙,它们无法克服遗忘。为了解决这个问题,本文提出了有关DFCIL的关系引导的代表学习(RRL),称为R-DFCIL。在RRL中,我们引入了关系知识蒸馏,以灵活地将新数据的结构关系从旧模型转移到当前模型。我们的RRL增强DFCIL可以指导当前的模型来学习与以前类的表示更好地兼容的新课程的表示,从而大大减少了在改善可塑性的同时遗忘。为了避免表示和分类器学习之间的相互干扰,我们在RRL期间采用本地分类损失而不是全球分类损失。在RRL之后,分类头将通过全球类平衡的分类损失进行完善,以解决数据不平衡问题,并学习新课程和以前类之间的决策界限。关于CIFAR100,Tiny-Imagenet200和Imagenet100的广泛实验表明,我们的R-DFCIL显着超过了以前的方法,并实现了DFCIL的新最新性能。代码可从https://github.com/jianzhangcs/r-dfcil获得。
translated by 谷歌翻译
本文认为增量少量学习,这需要一个模型,不断识别新类别,只有一些例子。我们的研究表明,现有方法严重遭受灾难性的遗忘,是一个增量学习中的一个众所周知的问题,这是由于少量拍摄设置中的数据稀缺和不平衡而加剧。我们的分析进一步表明,为了防止灾难性的遗忘,需要在原始阶段采取行动 - 基础类别的培训而不是稍后的几秒钟学习会议。因此,我们建议寻找基本训练目标函数的扁平本地最小值,然后在新任务中微调平面区域内的模型参数。通过这种方式,模型可以在保留旧的时有效地学习新类。综合实验结果表明,我们的方法优于所有现有最先进的方法,并且非常接近近似上限。源代码可在https://github.com/moukamisama/f2m上获得。
translated by 谷歌翻译
Lifelong learning has attracted much attention, but existing works still struggle to fight catastrophic forgetting and accumulate knowledge over long stretches of incremental learning. In this work, we propose PODNet, a model inspired by representation learning. By carefully balancing the compromise between remembering the old classes and learning new ones, PODNet fights catastrophic forgetting, even over very long runs of small incremental tasks -a setting so far unexplored by current works. PODNet innovates on existing art with an efficient spatialbased distillation-loss applied throughout the model and a representation comprising multiple proxy vectors for each class. We validate those innovations thoroughly, comparing PODNet with three state-of-the-art models on three datasets: CIFAR100, ImageNet100, and ImageNet1000. Our results showcase a significant advantage of PODNet over existing art, with accuracy gains of 12.10, 6.51, and 2.85 percentage points, respectively. 5
translated by 谷歌翻译
少量学习(FSL)旨在学习概括到具有有限培训样本的小型课程的模型。最近的作品将FSL推进一个场景,其中还提供了未标记的例子并提出半监督FSL方法。另一种方法还关心基类的性能,除了新颖的外,还建立了增量FSL方案。在本文中,我们在更现实但复杂的环境下概括了上述两个,通过半监督增量少量学习(S2 I-FSL)命名。为了解决任务,我们提出了一种包含两部分的新型范例:(1)一种精心设计的元训练算法,用于减轻由不可靠的伪标签和(2)模型适应机制来减轻基础和新颖类之间的模糊性,以学习歧视特征对于小说类,同时使用少数标记和所有未标记的数据保留基本知识。对标准FSL,半监控FSL,增量FSL的广泛实验,以及第一个构建的S2 I-FSL基准测试证明了我们提出的方法的有效性。
translated by 谷歌翻译
几次拍摄对象检测(FSOD)仅定位并在图像中分类对象仅给出一些数据样本。最近的FSOD研究趋势显示了公制和元学习技术的采用,这易于灾难性的遗忘和课堂混乱。为了克服基于度量学习的FSOD技术的这些陷阱,我们介绍了引入引导的余弦余量(AGCM),这有助于在对象检测器的分类头中创建更严格和良好的分离类特征群集。我们的新型专注提案融合(APF)模块通过降低共同发生的课程中的阶级差异来最大限度地减少灾难性遗忘。与此同时,拟议的余弦保证金交叉熵损失增加了混淆课程之间的角度裕度,以克服已经学习(基地)和新添加(新)类的课堂混淆的挑战。我们对挑战印度驾驶数据集(IDD)进行了实验,这呈现了一个现实世界类别 - 不平衡的环境,与流行的FSOD基准Pascal-VOC相同。我们的方法优于最先进的(SOTA)在IDD-OS上最多可达6.4个地图点,并且在IDD-10上的2.0次映射点为10次拍摄设置。在Pascal-Voc数据集上,我们优先于现有的SOTA方法,最多可达4.9个地图点。
translated by 谷歌翻译
事件检测任务可以帮助人们快速从复杂文本中确定域。它还可以为自然语言处理的下游任务提供强大的支持。存在仅基于大量数据实现固定型学习。当扩展到新课程时,通常需要保留原始数据并重新训练模型。事件检测任务可以终身学习新类,但是大多数现有方法都需要保留大量原始数据或面临灾难性的问题忘记。除此之外,由于缺乏实用性数据,很难获得足够的数据进行模型培训。要解决上述问题,我们在事件检测的领域定义了一项新任务,这是很少的增量事件检测。此任务要求在学习新事件类型的情况下,该模型应保留以前的类型,并且输入有限。我们根据几个event重新创建和发布基准数据集,以少数数量的事件检测任务。我们发布的数据集比该新任务中的其他数据集更合适。此外,我们提出了两种基准方法,即IFSED-K和IFSED-KP,可以以不同的方式解决任务。实验结果表明,我们的方法具有更高的F1分数,并且比基线更稳定。
translated by 谷歌翻译