我们提出了联合动量对比聚类(FEDMCC),这是一个学习框架,不仅可以在分布式本地数据上提取区分性表示,而且可以执行数据群集。在FEDMCC中,转换的数据对通过在线和目标网络都通过,从而确定了四个表示损失的表示。FEDMCC生成的产生的高质量表示可以胜过几种现有的自制学习方法,用于线性评估和半监督学习任务。FEDMCC可以通过我们称为动量对比聚类(MCC)轻松地适应普通的集中聚类。我们表明,MCC在某些数据集(例如STL-10和Imagenet-10)中实现了最先进的聚类精度。我们还提出了一种减少聚类方案的内存足迹的方法。
translated by 谷歌翻译
联合学习通常用于容易获得标签的任务(例如,下一个单词预测)。放松这种约束需要设计无监督的学习技术,该技术可以支持联合培训的理想特性:稳健性对统计/系统异质性,可伸缩性与参与者数量以及沟通效率。关于该主题的先前工作集中在直接扩展集中式的自我监督学习技术上,这些学习技术并非旨在具有上面列出的属性。为了解决这种情况,我们提出了乐团,这是一种新颖的无监督联盟学习技术,利用联邦的层次结构来协调分布式的聚类任务,并将客户数据对客户数据的全球始终划分为可区分的群集。我们显示了管弦乐队中的算法管道可确保在线性探针下良好的概括性能,从而使其在广泛的条件下胜过替代技术,包括异质性,客户次数,参与率和本地时期的变化。
translated by 谷歌翻译
The ubiquity of edge devices has led to a growing amount of unlabeled data produced at the edge. Deep learning models deployed on edge devices are required to learn from these unlabeled data to continuously improve accuracy. Self-supervised representation learning has achieved promising performances using centralized unlabeled data. However, the increasing awareness of privacy protection limits centralizing the distributed unlabeled image data on edge devices. While federated learning has been widely adopted to enable distributed machine learning with privacy preservation, without a data selection method to efficiently select streaming data, the traditional federated learning framework fails to handle these huge amounts of decentralized unlabeled data with limited storage resources on edge. To address these challenges, we propose a Federated on-device Contrastive learning framework with Coreset selection, which we call FedCoCo, to automatically select a coreset that consists of the most representative samples into the replay buffer on each device. It preserves data privacy as each client does not share raw data while learning good visual representations. Experiments demonstrate the effectiveness and significance of the proposed method in visual representation learning.
translated by 谷歌翻译
联合学习(FL)使分布式客户端能够学习共享模型以进行预测,同时保留每个客户端的培训数据本地。然而,现有的FL需要完全标记的培训数据,这是由于高标签成本和专业要求的要求而不方便或有时不可行。在许多现实设置中,缺乏标签会使流行不切实际。自我监督学习可以通过从未标记的数据学习来解决这一挑战,从而可以广泛使用FL。对比学习(CL)是一种自我监督的学习方法,可以有效地学习来自未标记数据的数据表示。然而,Clipers上收集的分布式数据通常在客户端之间通常不是独立和相同分布(非IID),并且每个客户端只有很少的数据类,这会降低CL和学习的表示的性能。为了解决这个问题,我们提出了由两种方法组成的联邦对比学习框架:特征融合和邻居匹配,通过该邻居匹配,以便获得更好的数据表示来实现客户端之间的统一特征空间。特征融合提供远程功能,作为每个客户端的准确对比信息,以获得更好的本地学习。邻域匹配进一步将每个客户端的本地功能对齐至远程功能,从而可以了解客户端之间的群集功能。广泛的实验表明了拟议框架的有效性。它在IID数据上以11 \%的方式表达了其他方法,并匹配集中学习的性能。
translated by 谷歌翻译
Federated learning enables multiple parties to collaboratively train a machine learning model without communicating their local data. A key challenge in federated learning is to handle the heterogeneity of local data distribution across parties. Although many studies have been proposed to address this challenge, we find that they fail to achieve high performance in image datasets with deep learning models. In this paper, we propose MOON: modelcontrastive federated learning. MOON is a simple and effective federated learning framework. The key idea of MOON is to utilize the similarity between model representations to correct the local training of individual parties,i.e., conducting contrastive learning in model-level. Our extensive experiments show that MOON significantly outperforms the other state-of-the-art federated learning algorithms on various image classification tasks.
translated by 谷歌翻译
有监督的深度学习需要大量标记的数据才能实现高性能。但是,在医学成像分析中,每个站点可能只有有限的数据和标签,这使得学习无效。联合学习(FL)可以从分散数据中学习共享模型。但是传统的FL需要全标签的数据进行培训,这非常昂贵。自我监督的对比学习(CL)可以从未标记的数据中学习进行预训练,然后进行微调,以有限的注释。但是,在FL中采用CL时,每个站点上的数据多样性有限,使联合对比度学习(FCL)无效。在这项工作中,我们提出了两个联合自制的学习框架,用于体积医学图像分割,并有限注释。第一个具有高精度,并适合高性能服务器,并具有高速连接。第二个具有较低的通信成本,适用于移动设备。在第一个框架中,在FCL期间交换了功能,以向每个站点提供各种对比度数据,以使本地CL保持原始数据的私密性。全局结构匹配将不同站点之间的统一特征空间保持一致。在第二个框架中,为了降低功能交换的通信成本,我们提出了一种优化的方法FCLOPT,该方法不依赖于负样本。为了减少模型下载的通信,我们提出了预测目标网络参数的预测目标网络更新(PTNU)。基于PTNU,我们建议距离预测(DP)以删除目标网络的大多数上传。在心脏MRI数据集上的实验表明,与最先进的技术相比,提出的两个框架显着改善了分割和泛化性能。
translated by 谷歌翻译
本文介绍了无监督的联合学习框架FEDX。我们的模型从分散和异质的局部数据中学习无偏的表示。它采用对比度学习作为核心组件的双面知识蒸馏,使联合系统可以在不要求客户共享任何数据功能的情况下运行。此外,它的适应性体系结构可以用作联合设置中现有无监督算法的附加模块。实验表明,我们的模型可显着提高五种无监督算法的性能(1.58--5.52pp)。
translated by 谷歌翻译
由于参与客户的异构特征,联邦学习往往受到不稳定和缓慢的收敛。当客户参与比率低时,这种趋势加剧了,因为从每个轮的客户收集的信息容易更加不一致。为了解决挑战,我们提出了一种新的联合学习框架,这提高了服务器端聚合步骤的稳定性,这是通过将客户端发送与全局梯度估计的加速模型来引导本地梯度更新来实现的。我们的算法自然地聚合并将全局更新信息与没有额外的通信成本的参与者传达,并且不需要将过去的模型存储在客户端中。我们还规范了本地更新,以进一步降低偏差并提高本地更新的稳定性。我们根据各种设置执行了关于实际数据的全面实证研究,与最先进的方法相比,在准确性和通信效率方面表现出了拟议方法的显着性能,特别是具有低客户参与率。我们的代码可在https://github.com/ninigapa0 / fedagm获得
translated by 谷歌翻译
自从联合学习(FL)被引入具有隐私保护的分散学习技术以来,分布式数据的统计异质性是实现FL应用中实现稳健性能和稳定收敛性的主要障碍。已经研究了模型个性化方法来克服这个问题。但是,现有的方法主要是在完全标记的数据的先决条件下,这在实践中是不现实的,由于需要专业知识。由部分标记的条件引起的主要问题是,标记数据不足的客户可能会遭受不公平的性能增益,因为他们缺乏足够的本地分销见解来自定义全球模型。为了解决这个问题,1)我们提出了一个新型的个性化的半监督学习范式,该范式允许部分标记或未标记的客户寻求与数据相关的客户(助手代理)的标签辅助,从而增强他们对本地数据的认识; 2)基于此范式,我们设计了一个基于不确定性的数据关系度量,以确保选定的帮助者可以提供值得信赖的伪标签,而不是误导当地培训; 3)为了减轻助手搜索引入的网络过载,我们进一步开发了助手选择协议,以实现有效的绩效牺牲的有效沟通。实验表明,与其他具有部分标记数据的相关作品相比,我们提出的方法可以获得卓越的性能和更稳定的收敛性,尤其是在高度异质的环境中。
translated by 谷歌翻译
现有的深度聚类方法依赖于对比学习的对比学习,这需要否定例子来形成嵌入空间,其中所有情况都处于良好分离状态。但是,否定的例子不可避免地引起阶级碰撞问题,损害了群集的表示学习。在本文中,我们探讨了对深度聚类的非对比表示学习,被称为NCC,其基于Byol,一种没有负例的代表性方法。首先,我们建议将一个增强的实例与嵌入空间中的另一个视图的邻居对齐,称为正抽样策略,该域避免了由否定示例引起的类碰撞问题,从而提高了集群内的紧凑性。其次,我们建议鼓励在所有原型中的一个原型和均匀性的两个增强视图之间的对准,命名的原型是原型的对比损失或protocl,这可以最大化簇间距离。此外,我们在期望 - 最大化(EM)框架中制定了NCC,其中E-Step利用球面K手段来估计实例的伪标签和来自目标网络的原型的分布,并且M-Step利用了所提出的损失优化在线网络。结果,NCC形成了一个嵌入空间,其中所有集群都处于分离良好,而内部示例都很紧凑。在包括ImageNet-1K的几个聚类基准数据集上的实验结果证明了NCC优于最先进的方法,通过显着的余量。
translated by 谷歌翻译
联邦学习对分布式数据利用率和隐私保护表达了极大的潜力。大多数现有的联合学习方法侧重于监督设置,这意味着存储在每个客户端中的所有数据都有标签。但是,在现实世界应用中,客户数据无法完全标记。因此,如何利用未标记的数据应该是联邦学习的新挑战。虽然一些研究正在试图克服这一挑战,但它们可能会遭受信息泄漏或误导性信息使用问题。为了解决这些问题,在本文中,我们提出了一种名为Fedtrinet的新型联合半监督学习方法,该方法由两个学习阶段组成。在第一阶段,我们使用带有FADVG的标记数据预先列教Fedtrinet。在第二阶段,我们的目标是使大部分未标记的数据来帮助模型学习。特别是,我们建议使用三个网络和动态质量控制机制来为未标记数据产生高质量的伪标签,该数据被添加到训练集中。最后,Fedtrinet使用新的训练设置来重新培训模型。在三个公共数据集上的实验结果表明,提出的Fedtrinet在IID和非IID设置下优于最先进的基线。
translated by 谷歌翻译
The statistical heterogeneity of the non-independent and identically distributed (non-IID) data in local clients significantly limits the performance of federated learning. Previous attempts like FedProx, SCAFFOLD, MOON, FedNova and FedDyn resort to an optimization perspective, which requires an auxiliary term or re-weights local updates to calibrate the learning bias or the objective inconsistency. However, in addition to previous explorations for improvement in federated averaging, our analysis shows that another critical bottleneck is the poorer optima of client models in more heterogeneous conditions. We thus introduce a data-driven approach called FedSkip to improve the client optima by periodically skipping federated averaging and scattering local models to the cross devices. We provide theoretical analysis of the possible benefit from FedSkip and conduct extensive experiments on a range of datasets to demonstrate that FedSkip achieves much higher accuracy, better aggregation efficiency and competing communication efficiency. Source code is available at: https://github.com/MediaBrain-SJTU/FedSkip.
translated by 谷歌翻译
联邦学习是一种广泛采用的方法,可以通过分布式数据训练神经网络。一个主要限制是数据异构地分布时发生的性能下降。虽然许多作品已经尝试解决这个问题,但这些方法是因为它们的内容而不是对神经网络的理解。在这项工作中,我们验证了神经网络中只有某些重要层数需要正规化以获得有效的培训。我们还验证了中心内核对齐(CKA)最精确地计算在不同数据上培训的神经网络层之间的相似性。通过在培训期间将基于CKA的正则化应用于重要层,我们显着提高了异构环境的性能。我们展示了Fedcka:一个简单的框架,在各种深度学习任务上出于以前的最先进方法,同时提高了效率和可扩展性。
translated by 谷歌翻译
联合学习(FL),使不同的医疗机构或客户能够在没有数据隐私泄漏的情况下进行协作培训模型,最近在医学成像社区中引起了极大的关注。尽管已经对客户间数据异质性进行了彻底的研究,但由于存在罕见疾病,阶级失衡问题仍然不足。在本文中,我们提出了一个新型的FL框架,用于医学图像分类,尤其是在处理罕见疾病的数据异质性方面。在Fedrare中,每个客户在本地训练一个模型,以通过客户内部监督对比度学习提取高度分离的潜在特征,以进行分类。考虑到有限的稀有疾病数据,我们建立了积极的样本队列以进行增强(即数据重采样)。 Fedrare中的服务器将从客户端收集潜在功能,并自动选择最可靠的潜在功能作为发送给客户的指南。然后,每个客户都会通过局部间的对比损失共同训练,以使其潜在特征与完整课程的联合潜在特征保持一致。通过这种方式,跨客户的参数/特征差异有效地最小化,从而可以更好地收敛和性能改进。关于皮肤病变诊断的公共可用数据集的实验结果表明,Fedrare的表现出色。在四个客户没有罕见病样本的10客户联合环境下,Fedrare的平均水平准确度平均增长了9.60%和5.90%,与FedAvg和FedAvg的基线框架和FedArt方法分别相比。考虑到在临床情况下存在罕见疾病的董事会,我们认为Fedrare将使未来的FL框架设计受益于医学图像分类。本文的源代码可在https://github.com/wnn2000/fedrare上公开获得。
translated by 谷歌翻译
Clustering has been extensively studied in centralized settings, but relatively unexplored in federated ones that data are distributed among multiple clients and can only be kept local at the clients. The necessity to invest more resources in improving federated clustering methods is twofold: 1) The performance of supervised federated learning models can benefit from clustering. 2) It is non-trivial to extend centralized ones to perform federated clustering tasks. In centralized settings, various deep clustering methods that perform dimensionality reduction and clustering jointly have achieved great success. To obtain high-quality cluster information, it is natural but non-trivial to extend these methods to federated settings. For this purpose, we propose a simple but effective federated deep clustering method. It requires only one communication round between the central server and clients, can run asynchronously, and can handle device failures. Moreover, although most studies have highlighted adverse effects of the non-independent and identically distributed (non-IID) data across clients, experimental results indicate that the proposed method can significantly benefit from this scenario.
translated by 谷歌翻译
由于其通过深层神经网络的共同表示学习和聚类的能力,近年来,深层聚类引起了人们的关注。在其最新发展中,对比度学习已成为一种有效的技术,可实质性地提高深度聚类的性能。但是,现有的基于学习的基于对比的深层聚类算法主要集中于一些精心设计的增强(通常具有有限的转换以保留结构),被称为薄弱的增强,但不能超越弱化的增强,以探索更多的机会(随着更具侵略性的转变甚至严重的扭曲)。在本文中,我们提出了一种被称为强烈增强的对比聚类(SACC)的端到端深群集方法,该方法将传统的两夸大视图范式扩展到多种视图,并共同利用强大而弱的增强,以增强深层聚类。特别是,我们利用具有三重共享权重的骨干网络,在该网络中,强烈的增强视图和两个弱化的视图均融合在一起。基于主链产生的表示,弱进行弱化的视图对和强力视图对同时被利用用于实例级的对比度学习(通过实例投影仪)和群集级的对比度学习(通过群集投影仪),与主链一起可以以纯监督的方式共同优化。五个具有挑战性的图像数据集的实验结果表明,我们的SACC方法优于最先进的方法。该代码可在https://github.com/dengxiaozhi/sacc上找到。
translated by 谷歌翻译
我们介绍了代表学习(CARL)的一致分配,通过组合来自自我监督对比学习和深层聚类的思路来学习视觉表现的无监督学习方法。通过从聚类角度来看对比学习,Carl通过学习一组一般原型来学习无监督的表示,该原型用作能量锚来强制执行给定图像的不同视图被分配给相同的原型。与与深层聚类的对比学习的当代工作不同,Carl建议以在线方式学习一组一般原型,使用梯度下降,而无需使用非可微分算法或k手段来解决群集分配问题。卡尔在许多代表性学习基准中超越了竞争对手,包括线性评估,半监督学习和转移学习。
translated by 谷歌翻译
联合学习(FL)是一种机器学习范式,允许分散的客户在不共享其私人数据的情况下进行协作学习。但是,过度的计算和沟通要求对当前的FL框架构成挑战,尤其是在训练大型模型时。为了防止这些问题阻碍FL系统的部署,我们提出了一个轻巧的框架,客户共同学习融合由多个固定预训练的模型生成的表示形式,而不是从SCRATCH培训大型模型。这通过考虑如何从预先训练的模型中捕获更多特定于客户的信息,并共同提高每个客户利用这些现成模型的能力,从而导致我们解决了一个更实用的FL问题。在这项工作中,我们设计了一种联合原型对比度学习(FEDPCL)方法,该方法通过其类原型共享客户的知识,并以原型对比度方式构建特定于客户的表示。共享原型而不是可学习的模型参数可以使每个客户以个性化的方式融合表示表示,同时以紧凑的形式保持共享知识以进行有效的通信。我们在轻量级框架中对拟议的FEDPCL进行了彻底的评估,以测量和可视化其在流行的FL数据集上融合各种预训练模型的能力。
translated by 谷歌翻译
我们介绍了一个新颖的联合学习框架FedD3,该框架减少了整体沟通量,并开放了联合学习的概念,从而在网络受限的环境中进行了更多的应用程序场景。它通过利用本地数据集蒸馏而不是传统的学习方法(i)大大减少沟通量,并(ii)将转移限制为一击通信,而不是迭代的多路交流来实现这一目标。 FedD3允许连接的客户独立提炼本地数据集,然后汇总那些去中心化的蒸馏数据集(通常以几个无法识别的图像,通常小于模型小于模型),而不是像其他联合学习方法共享模型更新,而是允许连接的客户独立提炼本地数据集。在整个网络上仅一次形成最终模型。我们的实验结果表明,FedD3在所需的沟通量方面显着优于其他联合学习框架,同时,根据使用情况或目标数据集,它为能够在准确性和沟通成本之间的权衡平衡。例如,要在具有10个客户的非IID CIFAR-10数据集上训练Alexnet模型,FedD3可以通过相似的通信量增加准确性超过71%,或者节省98%的通信量,同时达到相同的准确性与其他联合学习方法相比。
translated by 谷歌翻译
在皮肤病学诊断中,移动皮肤病学助理收集的私人数据存在于患者的分布式移动设备上。联合学习(FL)可以使用分散数据来训练模型,同时保持数据本地化。现有的FL方法假设所有数据都有标签。但是,由于高标签成本,医疗数据通常没有完整的标签。自我监督的学习(SSL)方法,对比度学习(CL)和蒙版自动编码器(MAE)可以利用未标记的数据来预先培训模型,然后用有限的标签进行微调。但是,组合SSL和FL有独特的挑战。例如,CL需要不同的数据,但每个设备仅具有有限的数据。对于MAE而言,尽管基于视觉变压器(VIT)的MAE在集中学习中具有更高的准确性,但尚未研究MAE在未标记数据的FL中的性能。此外,服务器和客户端之间的VIT同步与传统CNN不同。因此,需要设计特殊的同步方法。在这项工作中,我们提出了两个联邦自制的学习框架,用于具有有限标签的皮肤病学诊断。第一个具有较低的计算成本,适用于移动设备。第二个具有高精度,适合高性能服务器。根据CL,我们提出了与功能共享(FedClf)的联合对比度学习。共享功能可用于不同的对比信息,而无需共享原始数据以获得隐私。根据MAE,我们提出了Fedmae。知识拆分将所学的全球知识与每个客户分开。只有全球知识才能汇总为更高的概括性能。关于皮肤病学数据集的实验表明,所提出的框架的精度优于最先进的框架。
translated by 谷歌翻译