我们提出了层饱和 - 一种简单的在线可计算的方法,用于分析神经网络中的信息处理。首先,我们表明层的输出可以限制在没有性能损失的方差矩阵的eIgenspace。我们提出了一种计算上的轻量级方法,用于在训练期间近似方差矩阵。从其无损EIGenspace的维度我们推导了层饱和度 - eIGenspace尺寸和层宽度之间的比率。我们表明饱和度似乎表明哪个层有助于网络性能。我们通过改变网络深度,滤波器大小和输入分辨率,展示如何改变神经网络中的层饱和度。此外,我们表明,通过在网络上更均匀地分配推动过程,所选择的输入分辨率提高了网络性能。
translated by 谷歌翻译
While machine learning is traditionally a resource intensive task, embedded systems, autonomous navigation, and the vision of the Internet of Things fuel the interest in resource-efficient approaches. These approaches aim for a carefully chosen trade-off between performance and resource consumption in terms of computation and energy. The development of such approaches is among the major challenges in current machine learning research and key to ensure a smooth transition of machine learning technology from a scientific environment with virtually unlimited computing resources into everyday's applications. In this article, we provide an overview of the current state of the art of machine learning techniques facilitating these real-world requirements. In particular, we focus on deep neural networks (DNNs), the predominant machine learning models of the past decade. We give a comprehensive overview of the vast literature that can be mainly split into three non-mutually exclusive categories: (i) quantized neural networks, (ii) network pruning, and (iii) structural efficiency. These techniques can be applied during training or as post-processing, and they are widely used to reduce the computational demands in terms of memory footprint, inference speed, and energy efficiency. We also briefly discuss different concepts of embedded hardware for DNNs and their compatibility with machine learning techniques as well as potential for energy and latency reduction. We substantiate our discussion with experiments on well-known benchmark datasets using compression techniques (quantization, pruning) for a set of resource-constrained embedded systems, such as CPUs, GPUs and FPGAs. The obtained results highlight the difficulty of finding good trade-offs between resource efficiency and predictive performance.
translated by 谷歌翻译
Neural network pruning techniques can reduce the parameter counts of trained networks by over 90%, decreasing storage requirements and improving computational performance of inference without compromising accuracy. However, contemporary experience is that the sparse architectures produced by pruning are difficult to train from the start, which would similarly improve training performance.We find that a standard pruning technique naturally uncovers subnetworks whose initializations made them capable of training effectively. Based on these results, we articulate the lottery ticket hypothesis: dense, randomly-initialized, feed-forward networks contain subnetworks (winning tickets) that-when trained in isolationreach test accuracy comparable to the original network in a similar number of iterations. The winning tickets we find have won the initialization lottery: their connections have initial weights that make training particularly effective.We present an algorithm to identify winning tickets and a series of experiments that support the lottery ticket hypothesis and the importance of these fortuitous initializations. We consistently find winning tickets that are less than 10-20% of the size of several fully-connected and convolutional feed-forward architectures for MNIST and CIFAR10. Above this size, the winning tickets that we find learn faster than the original network and reach higher test accuracy.
translated by 谷歌翻译
可解释的人工智能(XAI)的新兴领域旨在为当今强大但不透明的深度学习模型带来透明度。尽管本地XAI方法以归因图的形式解释了个体预测,从而确定了重要特征的发生位置(但没有提供有关其代表的信息),但全局解释技术可视化模型通常学会的编码的概念。因此,两种方法仅提供部分见解,并留下将模型推理解释的负担。只有少数当代技术旨在将本地和全球XAI背后的原则结合起来,以获取更多信息的解释。但是,这些方法通常仅限于特定的模型体系结构,或对培训制度或数据和标签可用性施加其他要求,这实际上使事后应用程序成为任意预训练的模型。在这项工作中,我们介绍了概念相关性传播方法(CRP)方法,该方法结合了XAI的本地和全球观点,因此允许回答“何处”和“ where”和“什么”问题,而没有其他约束。我们进一步介绍了相关性最大化的原则,以根据模型对模型的有用性找到代表性的示例。因此,我们提高了对激活最大化及其局限性的共同实践的依赖。我们证明了我们方法在各种环境中的能力,展示了概念相关性传播和相关性最大化导致了更加可解释的解释,并通过概念图表,概念组成分析和概念集合和概念子区和概念子区和概念子集和定量研究对模型的表示和推理提供了深刻的见解。它们在细粒度决策中的作用。
translated by 谷歌翻译
神经架构的创新促进了语言建模和计算机视觉中的重大突破。不幸的是,如果网络参数未正确初始化,新颖的架构通常会导致挑战超参数选择和培训不稳定。已经提出了许多架构特定的初始化方案,但这些方案并不总是可移植到新体系结构。本文介绍了毕业,一种用于初始化神经网络的自动化和架构不可知论由方法。毕业基础是一个简单的启发式;调整每个网络层的规范,使得具有规定的超参数的SGD或ADAM的单个步骤导致可能的损耗值最小。通过在每个参数块前面引入标量乘数变量,然后使用简单的数字方案优化这些变量来完成此调整。 GradInit加速了许多卷积架构的收敛性和测试性能,无论是否有跳过连接,甚至没有归一化层。它还提高了机器翻译的原始变压器架构的稳定性,使得在广泛的学习速率和动量系数下使用ADAM或SGD来训练它而无需学习速率预热。代码可在https://github.com/zhuchen03/gradinit上获得。
translated by 谷歌翻译
尽管深度强化学习(RL)最近取得了许多成功,但其方法仍然效率低下,这使得在数据方面解决了昂贵的许多问题。我们的目标是通过利用未标记的数据中的丰富监督信号来进行学习状态表示,以解决这一问题。本文介绍了三种不同的表示算法,可以访问传统RL算法使用的数据源的不同子集使用:(i)GRICA受到独立组件分析(ICA)的启发,并训练深层神经网络以输出统计独立的独立特征。输入。 Grica通过最大程度地减少每个功能与其他功能之间的相互信息来做到这一点。此外,格里卡仅需要未分类的环境状态。 (ii)潜在表示预测(LARP)还需要更多的上下文:除了要求状态作为输入外,它还需要先前的状态和连接它们的动作。该方法通过预测当前状态和行动的环境的下一个状态来学习状态表示。预测器与图形搜索算法一起使用。 (iii)重新培训通过训练深层神经网络来学习国家表示,以学习奖励功能的平滑版本。该表示形式用于预处理输入到深度RL,而奖励预测指标用于奖励成型。此方法仅需要环境中的状态奖励对学习表示表示。我们发现,每种方法都有其优势和缺点,并从我们的实验中得出结论,包括无监督的代表性学习在RL解决问题的管道中可以加快学习的速度。
translated by 谷歌翻译
手写数字识别(HDR)是光学特征识别(OCR)领域中最具挑战性的任务之一。不管语言如何,HDR都存在一些固有的挑战,这主要是由于个人跨个人的写作风格的变化,编写媒介和环境的变化,无法在反复编写任何数字等时保持相同的笔触。除此之外,特定语言数字的结构复杂性可能会导致HDR的模棱两可。多年来,研究人员开发了许多离线和在线HDR管道,其中不同的图像处理技术与传统的机器学习(ML)基于基于的和/或基于深度学习(DL)的体系结构相结合。尽管文献中存在有关HDR的广泛审查研究的证据,例如:英语,阿拉伯语,印度,法尔西,中文等,但几乎没有对孟加拉人HDR(BHDR)的调查,这缺乏对孟加拉语HDR(BHDR)的研究,而这些调查缺乏对孟加拉语HDR(BHDR)的研究。挑战,基础识别过程以及可能的未来方向。在本文中,已经分析了孟加拉语手写数字的特征和固有的歧义,以及二十年来最先进的数据集的全面见解和离线BHDR的方法。此外,还详细讨论了一些涉及BHDR的现实应用特定研究。本文还将作为对离线BHDR背后科学感兴趣的研究人员的汇编,煽动了对相关研究的新途径的探索,这可能会进一步导致在不同应用领域对孟加拉语手写数字进行更好的离线认识。
translated by 谷歌翻译
图像分类的深卷卷神经网络(CNN)依次交替交替进行卷积和下采样操作,例如合并层或陷入困境的卷积,从而导致较低的分辨率特征网络越深。这些降采样操作节省了计算资源,并在下一层提供了一些翻译不变性以及更大的接收领域。但是,这样做的固有副作用是,在网络深端产生的高级特征始终以低分辨率特征图捕获。逆也是如此,因为浅层总是包含小规模的特征。在生物医学图像分析中,工程师通常负责对仅包含有限信息的非常小的图像贴片进行分类。从本质上讲,这些补丁甚至可能不包含对象,而分类取决于图像纹理中未知量表的微妙基础模式的检测。在这些情况下,每一个信息都是有价值的。因此,重要的是要提取最大数量的信息功能。在这些考虑因素的推动下,我们引入了一种新的CNN体​​系结构,该体系结构可通过利用跳过连接以及连续的收缩和特征图的扩展来保留深,中间和浅层层的多尺度特征。使用来自胰腺导管腺癌(PDAC)CT扫描的非常低分辨率斑块的数据集,我们证明我们的网络可以超越最新模型的当前状态。
translated by 谷歌翻译
在本文中,我们提出了解决稳定性和卷积神经网络(CNN)的稳定性和视野的问题的神经网络。作为提高网络深度或宽度以提高性能的替代方案,我们提出了与全球加权拉普拉斯,分数拉普拉斯和逆分数拉普拉斯算子有关的基于积分的空间非识别算子,其在物理科学中的几个问题中出现。这种网络的前向传播由部分积分微分方程(PIDE)启发。我们在自动驾驶中测试基准图像分类数据集和语义分段任务的提出神经架构的有效性。此外,我们调查了这些密集的运营商的额外计算成本以及提出神经网络的前向传播的稳定性。
translated by 谷歌翻译
通过卫星摄像机获取关于地球表面的大面积的信息使我们能够看到远远超过我们在地面上看到的更多。这有助于我们在检测和监测土地使用模式,大气条件,森林覆盖和许多非上市方面的地区的物理特征。所获得的图像不仅跟踪连续的自然现象,而且对解决严重森林砍伐的全球挑战也至关重要。其中亚马逊盆地每年占最大份额。适当的数据分析将有助于利用可持续健康的氛围来限制对生态系统和生物多样性的不利影响。本报告旨在通过不同的机器学习和优越的深度学习模型用大气和各种陆地覆盖或土地使用亚马逊雨林的卫星图像芯片。评估是基于F2度量完成的,而用于损耗函数,我们都有S形跨熵以及Softmax交叉熵。在使用预先训练的ImageNet架构中仅提取功能之后,图像被间接馈送到机器学习分类器。鉴于深度学习模型,通过传输学习使用微调Imagenet预训练模型的集合。到目前为止,我们的最佳分数与F2度量为0.927。
translated by 谷歌翻译
Neural network training relies on our ability to find "good" minimizers of highly non-convex loss functions. It is well-known that certain network architecture designs (e.g., skip connections) produce loss functions that train easier, and wellchosen training parameters (batch size, learning rate, optimizer) produce minimizers that generalize better. However, the reasons for these differences, and their effects on the underlying loss landscape, are not well understood. In this paper, we explore the structure of neural loss functions, and the effect of loss landscapes on generalization, using a range of visualization methods. First, we introduce a simple "filter normalization" method that helps us visualize loss function curvature and make meaningful side-by-side comparisons between loss functions. Then, using a variety of visualizations, we explore how network architecture affects the loss landscape, and how training parameters affect the shape of minimizers.
translated by 谷歌翻译
Most modern convolutional neural networks (CNNs) used for object recognition are built using the same principles: Alternating convolution and max-pooling layers followed by a small number of fully connected layers. We re-evaluate the state of the art for object recognition from small images with convolutional networks, questioning the necessity of different components in the pipeline. We find that max-pooling can simply be replaced by a convolutional layer with increased stride without loss in accuracy on several image recognition benchmarks. Following this finding -and building on other recent work for finding simple network structures -we propose a new architecture that consists solely of convolutional layers and yields competitive or state of the art performance on several object recognition datasets (CIFAR-10, CIFAR-100, ImageNet). To analyze the network we introduce a new variant of the "deconvolution approach" for visualizing features learned by CNNs, which can be applied to a broader range of network structures than existing approaches.
translated by 谷歌翻译
深度学习文献通过新的架构和培训技术不断更新。然而,尽管有一些关于随机权重的发现,但最近的研究却忽略了重量初始化。另一方面,最近的作品一直在接近网络科学,以了解训练后人工神经网络(ANN)的结构和动态。因此,在这项工作中,我们分析了随机初始化网络中神经元的中心性。我们表明,较高的神经元强度方差可能会降低性能,而较低的神经元强度方差通常会改善它。然后,提出了一种新方法,根据其强度根据优先附着(PA)规则重新连接神经元连接,从而大大降低了通过常见方法初始化的层的强度方差。从这个意义上讲,重新布线仅重新组织连接,同时保留权重的大小和分布。我们通过对图像分类进行的广泛统计分析表明,在使用简单和复杂的体系结构和学习时间表时,在大多数情况下,在培训和测试过程中,性能都会提高。我们的结果表明,除了规模外,权重的组织也与更好的初始化初始化有关。
translated by 谷歌翻译
这项工作引入了图像分类器的注意机制和相应的深神经网络(DNN)结构,称为ISNET。在训练过程中,ISNET使用分割目标来学习如何找到图像感兴趣的区域并将注意力集中在其上。该提案基于一个新颖的概念,即在说明热图中的背景相关性最小化。它几乎可以应用于任何分类神经网络体系结构,而在运行时没有任何额外的计算成本。能够忽略背景的单个DNN可以替换分段者的通用管道,然后是分类器,更快,更轻。我们测试了ISNET的三种应用:Covid-19和胸部X射线中的结核病检测以及面部属性估计。前两个任务采用了混合培训数据库,并培养了快捷方式学习。通过关注肺部并忽略背景中的偏见来源,ISNET减少了问题。因此,它改善了生物医学分类问题中外部(分布外)测试数据集的概括,超越了标准分类器,多任务DNN(执行分类和细分),注意力门控神经网络以及标准段 - 分类管道。面部属性估计表明,ISNET可以精确地集中在面孔上,也适用于自然图像。 ISNET提出了一种准确,快速和轻的方法,可忽略背景并改善各种领域的概括。
translated by 谷歌翻译
深度学习技术在各种任务中都表现出了出色的有效性,并且深度学习具有推进多种应用程序(包括在边缘计算中)的潜力,其中将深层模型部署在边缘设备上,以实现即时的数据处理和响应。一个关键的挑战是,虽然深层模型的应用通常会产生大量的内存和计算成本,但Edge设备通常只提供非常有限的存储和计算功能,这些功能可能会在各个设备之间差异很大。这些特征使得难以构建深度学习解决方案,以释放边缘设备的潜力,同时遵守其约束。应对这一挑战的一种有希望的方法是自动化有效的深度学习模型的设计,这些模型轻巧,仅需少量存储,并且仅产生低计算开销。该调查提供了针对边缘计算的深度学习模型设计自动化技术的全面覆盖。它提供了关键指标的概述和比较,这些指标通常用于量化模型在有效性,轻度和计算成本方面的水平。然后,该调查涵盖了深层设计自动化技术的三类最新技术:自动化神经体系结构搜索,自动化模型压缩以及联合自动化设计和压缩。最后,调查涵盖了未来研究的开放问题和方向。
translated by 谷歌翻译
接收场的大小和形状决定了网络如何聚集本地信息并极大地影响模型的整体性能。神经网络中的许多组件,例如内核大小和用于卷积和汇总操作的大步,都会影响接受场的配置。但是,它们仍然依靠超参数,现有模型的接受场导致了次优的形状和尺寸。因此,我们提出了一个简单而有效的动态优化的合并操作,称为Dynopool,该操作通过学习每一层中其接受场的理想大小和形状来优化特征地图的比例因子。深层神经网络中的任何调整模块都可以用Dynopool的操作取代,而成本最低。此外,Dynopool通过引入限制计算成本的附加损失项来控制模型的复杂性。我们的实验表明,配备了拟议的可学习调整模块的模型优于图像分类和语义分割中多个数据集上的基线网络。
translated by 谷歌翻译
由于存储器和计算资源有限,部署在移动设备上的卷积神经网络(CNNS)是困难的。我们的目标是通过利用特征图中的冗余来设计包括CPU和GPU的异构设备的高效神经网络,这很少在神经结构设计中进行了研究。对于类似CPU的设备,我们提出了一种新颖的CPU高效的Ghost(C-Ghost)模块,以生成从廉价操作的更多特征映射。基于一组内在的特征映射,我们使用廉价的成本应用一系列线性变换,以生成许多幽灵特征图,可以完全揭示内在特征的信息。所提出的C-Ghost模块可以作为即插即用组件,以升级现有的卷积神经网络。 C-Ghost瓶颈旨在堆叠C-Ghost模块,然后可以轻松建立轻量级的C-Ghostnet。我们进一步考虑GPU设备的有效网络。在建筑阶段的情况下,不涉及太多的GPU效率(例如,深度明智的卷积),我们建议利用阶段明智的特征冗余来制定GPU高效的幽灵(G-GHOST)阶段结构。舞台中的特征被分成两个部分,其中使用具有较少输出通道的原始块处理第一部分,用于生成内在特征,另一个通过利用阶段明智的冗余来生成廉价的操作。在基准测试上进行的实验证明了所提出的C-Ghost模块和G-Ghost阶段的有效性。 C-Ghostnet和G-Ghostnet分别可以分别实现CPU和GPU的准确性和延迟的最佳权衡。代码可在https://github.com/huawei-noah/cv-backbones获得。
translated by 谷歌翻译
随着深度学习(DL)的出现,超分辨率(SR)也已成为一个蓬勃发展的研究领域。然而,尽管结果有希望,但该领域仍然面临需要进一步研究的挑战,例如,允许灵活地采样,更有效的损失功能和更好的评估指标。我们根据最近的进步来回顾SR的域,并检查最新模型,例如扩散(DDPM)和基于变压器的SR模型。我们对SR中使用的当代策略进行了批判性讨论,并确定了有前途但未开发的研究方向。我们通过纳入该领域的最新发展,例如不确定性驱动的损失,小波网络,神经体系结构搜索,新颖的归一化方法和最新评估技术来补充先前的调查。我们还为整章中的模型和方法提供了几种可视化,以促进对该领域趋势的全球理解。最终,这篇综述旨在帮助研究人员推动DL应用于SR的界限。
translated by 谷歌翻译
Unsupervised visual representation learning remains a largely unsolved problem in computer vision research. Among a big body of recently proposed approaches for unsupervised learning of visual representations, a class of self-supervised techniques achieves superior performance on many challenging benchmarks. A large number of the pretext tasks for self-supervised learning have been studied, but other important aspects, such as the choice of convolutional neural networks (CNN), has not received equal attention. Therefore, we revisit numerous previously proposed self-supervised models, conduct a thorough large scale study and, as a result, uncover multiple crucial insights. We challenge a number of common practices in selfsupervised visual representation learning and observe that standard recipes for CNN design do not always translate to self-supervised representation learning. As part of our study, we drastically boost the performance of previously proposed techniques and outperform previously published state-of-the-art results by a large margin.
translated by 谷歌翻译
This paper addresses the problem of estimating the depth map of a scene given a single RGB image. We propose a fully convolutional architecture, encompassing residual learning, to model the ambiguous mapping between monocular images and depth maps. In order to improve the output resolution, we present a novel way to efficiently learn feature map up-sampling within the network. For optimization, we introduce the reverse Huber loss that is particularly suited for the task at hand and driven by the value distributions commonly present in depth maps. Our model is composed of a single architecture that is trained end-to-end and does not rely on post-processing techniques, such as CRFs or other additional refinement steps. As a result, it runs in real-time on images or videos. In the evaluation, we show that the proposed model contains fewer parameters and requires fewer training data than the current state of the art, while outperforming all approaches on depth estimation. Code and models are publicly available 5 .
translated by 谷歌翻译