近年来,Googlenet作为基础卷积神经网络(CNNS)之一来获得大量关注,以提取用于对象检测的可视特征。然而,当通过不同性质串联元素时,它经历了污染的深度特征的挑战。此外,由于Googlenet不是完全轻量级的CNN,因此它仍然具有许多执行开销来应用于资源匮乏的应用程序域。因此,已经提出了一种新的CNN,FARMORNET,以克服这些功能挑战。 FeverOrmet CNN由多个独立的子CNN组成,用于编码深度视觉特征的不同方面,并且在权重参数和浮点操作方面的执行开销较少。将FarmorNet纳入更快的RCNN框架,证明了FeverOrmet给出\忽略{A 5 \%}的更好的准确性,并在整个基准对象检测基准数据中在实时对象检测系统中设置的GoolGlenet上产生额外的加速。
translated by 谷歌翻译
建立一个小型的快速监控系统模型,适合有限的资源设备是一个具有挑战性的,但却是一个重要的任务。卷积神经网络(CNNS)在检测和分类任务中取代了传统的特征提取和机器学习模型。提出了各种复杂的大型CNN模型,从而实现了精度的显着改善。最近介绍了轻量级CNN型号用于实时任务。本文介绍了一种基于CNN的轻量级模型,可以适合诸如覆盆子PI的有限边缘装置。我们所提出的模型提供了具有更好的性能时间,较小的尺寸和与现有方法的可比准确度。在多个基准数据集中评估模型性能。它也与现有模型相比,在大小,平均处理时间和F分数方面。建议未来研究的其他增强功能。
translated by 谷歌翻译
深度是自治车辆以感知障碍的重要信息。由于价格相对较低,单目一体相机的小尺寸,从单个RGB图像的深度估计引起了对研究界的兴趣。近年来,深神经网络(DNN)的应用已经显着提高了单眼深度估计(MDE)的准确性。最先进的方法通常设计在复杂和极其深的网络架构之上,需要更多的计算资源,而不使用高端GPU实时运行。虽然一些研究人员试图加速运行速度,但深度估计的准确性降低,因为压缩模型不代表图像。另外,现有方法使用的特征提取器的固有特性导致产生的特征图中的严重空间信息丢失,这也损害了小型图像的深度估计的精度。在本研究中,我们有动力设计一种新颖且有效的卷积神经网络(CNN),其连续地组装两个浅编码器解码器样式子网,以解决这些问题。特别是,我们强调MDE准确性和速度之间的权衡。已经在NYU深度V2,Kitti,Make3D和虚幻数据集上进行了广泛的实验。与拥有极其深层和复杂的架构的最先进的方法相比,所提出的网络不仅可以实现可比性的性能,而且在单个不那么强大的GPU上以更快的速度运行。
translated by 谷歌翻译
最近已经设计了一些轻巧的卷积神经网络(CNN)模型,用于遥感对象检测(RSOD)。但是,他们中的大多数只是用可分离的卷积代替了香草卷积,这可能是由于很多精确损失而无法有效的,并且可能无法检测到方向的边界框(OBB)。同样,现有的OBB检测方法很难准确限制CNN预测的对象的形状。在本文中,我们提出了一个有效的面向轻质对象检测器(LO-DET)。具体而言,通道分离聚集(CSA)结构旨在简化可分开的卷积的复杂性,并开发了动态的接收场(DRF)机制,以通过自定义卷积内核及其感知范围来保持高精度,以保持高精度。网络复杂性。 CSA-DRF组件在保持高精度的同时优化了效率。然后,对角支撑约束头(DSC-Head)组件旨在检测OBB,并更准确,更稳定地限制其形状。公共数据集上的广泛实验表明,即使在嵌入式设备上,拟议的LO-DET也可以非常快地运行,具有检测方向对象的竞争精度。
translated by 谷歌翻译
Deep neural networks (DNNs) are currently widely used for many artificial intelligence (AI) applications including computer vision, speech recognition, and robotics. While DNNs deliver state-of-the-art accuracy on many AI tasks, it comes at the cost of high computational complexity. Accordingly, techniques that enable efficient processing of DNNs to improve energy efficiency and throughput without sacrificing application accuracy or increasing hardware cost are critical to the wide deployment of DNNs in AI systems.This article aims to provide a comprehensive tutorial and survey about the recent advances towards the goal of enabling efficient processing of DNNs. Specifically, it will provide an overview of DNNs, discuss various hardware platforms and architectures that support DNNs, and highlight key trends in reducing the computation cost of DNNs either solely via hardware design changes or via joint hardware design and DNN algorithm changes. It will also summarize various development resources that enable researchers and practitioners to quickly get started in this field, and highlight important benchmarking metrics and design considerations that should be used for evaluating the rapidly growing number of DNN hardware designs, optionally including algorithmic co-designs, being proposed in academia and industry.The reader will take away the following concepts from this article: understand the key design considerations for DNNs; be able to evaluate different DNN hardware implementations with benchmarks and comparison metrics; understand the trade-offs between various hardware architectures and platforms; be able to evaluate the utility of various DNN design techniques for efficient processing; and understand recent implementation trends and opportunities.
translated by 谷歌翻译
深度卷积神经网络(DCNN)辅助高动态范围(HDR)成像最近接受了很多关注。 DCNN生成的HDR图像的质量过于传统的对应物。然而,DCNN容易被计算密集和富力耗电。为了解决挑战,我们提出了用于极端双曝光图像融合的轻质CNN的基于轻型CNN的算法,这可以在具有有限的电力和硬件资源的各种嵌入式计算平台上实现。使用两个子网络:GlobalNet(g)和detailnet(d)。 G的目标是学习关于空间维度的全局信息,而D旨在增强通道维度的本地细节。 G和D都仅基于深度卷积(D CONC)和何时卷积(P CONV),以减少所需的参数和计算。实验结果显示所提出的技术可以在极其暴露的区域中产生具有合理细节的HDR图像。我们的模型超过了其他最先进的方法0.7至8.5,至于PSNR得分,并与其他方式达到7,675至463,385参数减少
translated by 谷歌翻译
Semantic segmentation works on the computer vision algorithm for assigning each pixel of an image into a class. The task of semantic segmentation should be performed with both accuracy and efficiency. Most of the existing deep FCNs yield to heavy computations and these networks are very power hungry, unsuitable for real-time applications on portable devices. This project analyzes current semantic segmentation models to explore the feasibility of applying these models for emergency response during catastrophic events. We compare the performance of real-time semantic segmentation models with non-real-time counterparts constrained by aerial images under oppositional settings. Furthermore, we train several models on the Flood-Net dataset, containing UAV images captured after Hurricane Harvey, and benchmark their execution on special classes such as flooded buildings vs. non-flooded buildings or flooded roads vs. non-flooded roads. In this project, we developed a real-time UNet based model and deployed that network on Jetson AGX Xavier module.
translated by 谷歌翻译
Currently, the neural network architecture design is mostly guided by the indirect metric of computation complexity, i.e., FLOPs. However, the direct metric, e.g., speed, also depends on the other factors such as memory access cost and platform characterics. Thus, this work proposes to evaluate the direct metric on the target platform, beyond only considering FLOPs. Based on a series of controlled experiments, this work derives several practical guidelines for efficient network design. Accordingly, a new architecture is presented, called ShuffleNet V2.Comprehensive ablation experiments verify that our model is the stateof-the-art in terms of speed and accuracy tradeoff.
translated by 谷歌翻译
X射线图像在制造业的质量保证中起着重要作用,因为它可以反映焊接区域的内部条件。然而,不同缺陷类型的形状和规模大大变化,这使得模型检测焊接缺陷的挑战性。在本文中,我们提出了一种基于卷积神经网络的焊接缺陷检测方法,即打火机和更快的YOLO(LF-YOLO)。具体地,增强的多尺度特征(RMF)模块旨在实现基于参数和无参数的多尺度信息提取操作。 RMF使得提取的特征映射能够代表更丰富的信息,该信息是通过卓越的层级融合结构实现的。为了提高检测网络的性能,我们提出了一个有效的特征提取(EFE)模块。 EFE处理具有极低消耗量的输入数据,并提高了实际行业中整个网络的实用性。实验结果表明,我们的焊接缺陷检测网络在性能和消耗之间实现了令人满意的平衡,达到92.9平均平均精度MAP50,每秒61.5帧(FPS)。为了进一步证明我们方法的能力,我们在公共数据集MS Coco上测试它,结果表明我们的LF-YOLO具有出色的多功能性检测性能。代码可在https://github.com/lmomoy/lf-yolo上获得。
translated by 谷歌翻译
交通标志检测是无人驾驶系统的具有挑战性的任务,特别是对于检测多尺度目标和检测的实时问题。在交通标志检测过程中,目标的比例大大变化,这将对检测精度产生一定的影响。特征金字塔广泛用于解决这个问题,但它可能会破坏不同的交通标志尺度的功能一致性。此外,在实际应用中,常用方法难以提高多尺度交通标志的检测精度,同时确保实时检测。在本文中,我们提出了一种改进的特征金字塔模型,名为AF-FPN,它利用自适应注意模块(AAM)和特征增强模块(FEM)来减少特征映射生成过程中的信息损失,并提高表示能力特征金字塔。我们用AF-FPN替换了YOLOV5中的原始特征金字塔网络,这在确保实时检测的前提下提高了YOLOV5网络的多尺度目标的检测性能。此外,提出了一种新的自动学习数据增强方法来丰富数据集,提高模型的稳健性,使其更适合实际情况。关于清华腾讯100K(TT100K)数据集的广泛实验结果证明了与多种最先进的方法相比,所提出的方法的有效性和优越性。
translated by 谷歌翻译
语义分割是将类标签分配给图像中每个像素的问题,并且是自动车辆视觉堆栈的重要组成部分,可促进场景的理解和对象检测。但是,许多表现最高的语义分割模型非常复杂且笨拙,因此不适合在计算资源有限且低延迟操作的板载自动驾驶汽车平台上部署。在这项调查中,我们彻底研究了旨在通过更紧凑,更有效的模型来解决这种未对准的作品,该模型能够在低内存嵌入式系统上部署,同时满足实时推理的限制。我们讨论了该领域中最杰出的作品,根据其主要贡献将它们置于分类法中,最后我们评估了在一致的硬件和软件设置下,所讨论模型的推理速度,这些模型代表了具有高端的典型研究环境GPU和使用低内存嵌入式GPU硬件的现实部署方案。我们的实验结果表明,许多作品能够在资源受限的硬件上实时性能,同时说明延迟和准确性之间的一致权衡。
translated by 谷歌翻译
为了使用各种类型的数据理解现实世界,人工智能(AI)是当今最常用的技术。在分析数据中找到模式的同时表示主要任务。这是通过提取代表性特征步骤来执行的,该步骤是使用统计算法或使用某些特定过滤器进行的。但是,从大规模数据中选择有用的功能代表了至关重要的挑战。现在,随着卷积神经网络(CNN)的发展,功能提取操作变得更加自动和更容易。 CNN允许处理大规模的数据,并涵盖特定任务的不同方案。对于计算机视觉任务,卷积网络也用于为深度学习模型的其他部分提取功能。选择合适的网络用于特征提取或DL模型的其他部分不是随机工作。因此,这种模型的实现可能与目标任务以及其计算复杂性有关。已经提出了许多网络,并成为任何AI任务中任何DL模型的著名网络。这些网络被利用用于特征提取或在任何名为骨架的DL模型的开头。骨干是以前在许多其他任务中训练并证明其有效性的已知网络。在本文中,现有骨干的概述,例如详细说明给出了VGG,Resnets,Densenet等。此外,通过对所使用的骨干进行审查,讨论了几个计算机视觉任务。此外,还基于每个任务的骨干,还提供了性能的比较。
translated by 谷歌翻译
2D CNN和视觉变压器(VIT)的最新进展表明,大型内核对于足够的接受场和高性能至关重要。受这些文献的启发,我们研究了3D大型设计的可行性和挑战。我们证明,在3D CNN中应用大型卷积内核在性能和效率方面都有更多困难。在2D CNN中运行良好的现有技术在3D网络中无效,包括流行的深度卷积。为了克服这些障碍,我们介绍了空间团体卷积及其大内核模块(SW-LK块)。它避免了幼稚3D大核的优化和效率问题。我们的大型内核3D CNN网络,即grounkernel3d,对各种3D任务(包括语义分割和对象检测)产生了非平凡的改进。值得注意的是,它在ScannETV2语义细分和72.8%的NDS NUSCENES对象检测基准上获得了73.9%的MIOU,在Nuscenes Lidar Leadar排行榜上排名第一。具有简单的多模式融合,将其进一步提高到74.2%NDS。与其CNN和Transformer对应物相比,bamekernel3d获得了可比或优越的结果。我们第一次表明,大型内核是可行的,对于3D网络至关重要。
translated by 谷歌翻译
为了实现不断增长的准确性,通常会开发大型和复杂的神经网络。这样的模型需要高度的计算资源,因此不能在边缘设备上部署。由于它们在几个应用领域的有用性,建立资源有效的通用网络非常感兴趣。在这项工作中,我们努力有效地结合了CNN和变压器模型的优势,并提出了一种新的有效混合体系结构。特别是在EDGENEXT中,我们引入了分裂深度转置注意力(SDTA)编码器,该编码器将输入张量分解为多个通道组,并利用深度旋转以及跨通道维度的自我注意力,以隐含地增加接受场并编码多尺度特征。我们在分类,检测和分割任务上进行的广泛实验揭示了所提出的方法的优点,优于相对较低的计算要求的最先进方法。我们具有130万参数的EDGENEXT模型在Imagenet-1k上达到71.2 \%TOP-1的精度,超过移动设备的绝对增益为2.2 \%,而拖鞋减少了28 \%。此外,我们具有560万参数的EDGENEXT模型在Imagenet-1k上达到了79.4 \%TOP-1的精度。代码和模型可在https://t.ly/_vu9上公开获得。
translated by 谷歌翻译
Due to object detection's close relationship with video analysis and image understanding, it has attracted much research attention in recent years. Traditional object detection methods are built on handcrafted features and shallow trainable architectures. Their performance easily stagnates by constructing complex ensembles which combine multiple low-level image features with high-level context from object detectors and scene classifiers. With the rapid development in deep learning, more powerful tools, which are able to learn semantic, high-level, deeper features, are introduced to address the problems existing in traditional architectures. These models behave differently in network architecture, training strategy and optimization function, etc. In this paper, we provide a review on deep learning based object detection frameworks. Our review begins with a brief introduction on the history of deep learning and its representative tool, namely Convolutional Neural Network (CNN). Then we focus on typical generic object detection architectures along with some modifications and useful tricks to improve detection performance further. As distinct specific detection tasks exhibit different characteristics, we also briefly survey several specific tasks, including salient object detection, face detection and pedestrian detection. Experimental analyses are also provided to compare various methods and draw some meaningful conclusions. Finally, several promising directions and tasks are provided to serve as guidelines for future work in both object detection and relevant neural network based learning systems.
translated by 谷歌翻译
在实际应用中,通常可以获得较小的数据集。目前,机器学习的大多数实际应用都使用基于大数据的经典模型来解决小型数据集的问题。但是,深度神经网络模型具有复杂的结构,巨大的模型参数和培训需要更高级的设备,这给应用程序带来了一定的困难。因此,本文提出了工会卷积的概念,设计了具有浅网络结构的光线深网模型联合网络,并适应了小型数据集。该模型将卷积网络单元与相同输入的不同组合结合在一起,形成联合模块。每个联合模块等效于卷积层。 3个模块之间的串行输入和输出构成了“ 3层”神经网络。每个联合模块的输出融合并添加为最后一个卷积层的输入,以形成具有4层网络结构的复杂网络。它解决了深层网络模型网络太深并且传输路径太长的问题,这会导致基础信息传输的丢失。由于模型的模型参数较少,通道较少,因此可以更好地适应小型数据集。它解决了一个问题,即深网模型容易过度培训小型数据集。使用公共数据集CIFAR10和17Flowers进行多分类实验。实验表明,联合网络模型可以在大型数据集和小数据集的分类中表现良好。它在日常应用程序方案中具有很高的实践价值。该模型代码发表在https://github.com/yeaso/union-net上
translated by 谷歌翻译
水下结构的维修和维护以及海洋科学在很大程度上依赖于水下对象检测的结果,这是图像处理工作流程的关键部分。尽管已经提出了许多基于计算机视觉的方法,但还没有人开发出一种可靠,准确地检测并对深海中发现的物体和动物进行分类的系统。这主要是由于障碍物在水下环境中散射和吸收光线。随着深度学习的引入,科学家们已经能够解决广泛的问题,包括保护海洋生态系统,在紧急情况下挽救生命,防止水下灾难,并发现,汤匙和识别水下目标。但是,这些深度学习系统的好处和缺点仍然未知。因此,本文的目的是提供在水下对象检测中使用的数据集的概述,并介绍为此目的所采用的算法的优势和缺点的讨论。
translated by 谷歌翻译
由于存储器和计算资源有限,部署在移动设备上的卷积神经网络(CNNS)是困难的。我们的目标是通过利用特征图中的冗余来设计包括CPU和GPU的异构设备的高效神经网络,这很少在神经结构设计中进行了研究。对于类似CPU的设备,我们提出了一种新颖的CPU高效的Ghost(C-Ghost)模块,以生成从廉价操作的更多特征映射。基于一组内在的特征映射,我们使用廉价的成本应用一系列线性变换,以生成许多幽灵特征图,可以完全揭示内在特征的信息。所提出的C-Ghost模块可以作为即插即用组件,以升级现有的卷积神经网络。 C-Ghost瓶颈旨在堆叠C-Ghost模块,然后可以轻松建立轻量级的C-Ghostnet。我们进一步考虑GPU设备的有效网络。在建筑阶段的情况下,不涉及太多的GPU效率(例如,深度明智的卷积),我们建议利用阶段明智的特征冗余来制定GPU高效的幽灵(G-GHOST)阶段结构。舞台中的特征被分成两个部分,其中使用具有较少输出通道的原始块处理第一部分,用于生成内在特征,另一个通过利用阶段明智的冗余来生成廉价的操作。在基准测试上进行的实验证明了所提出的C-Ghost模块和G-Ghost阶段的有效性。 C-Ghostnet和G-Ghostnet分别可以分别实现CPU和GPU的准确性和延迟的最佳权衡。代码可在https://github.com/huawei-noah/cv-backbones获得。
translated by 谷歌翻译
Deploying convolutional neural networks (CNNs) on embedded devices is difficult due to the limited memory and computation resources. The redundancy in feature maps is an important characteristic of those successful CNNs, but has rarely been investigated in neural architecture design. This paper proposes a novel Ghost module to generate more feature maps from cheap operations. Based on a set of intrinsic feature maps, we apply a series of linear transformations with cheap cost to generate many ghost feature maps that could fully reveal information underlying intrinsic features. The proposed Ghost module can be taken as a plug-and-play component to upgrade existing convolutional neural networks. Ghost bottlenecks are designed to stack Ghost modules, and then the lightweight Ghost-Net can be easily established. Experiments conducted on benchmarks demonstrate that the proposed Ghost module is an impressive alternative of convolution layers in baseline models, and our GhostNet can achieve higher recognition performance (e.g. 75.7% top-1 accuracy) than MobileNetV3 with similar computational cost on the ImageNet ILSVRC-2012 classification dataset. Code is available at https: //github.com/huawei-noah/ghostnet.
translated by 谷歌翻译
视觉地点识别(VPR)是一个具有挑战性的任务,具有巨大的计算成本与高识别性能之间的不平衡。由于轻质卷积神经网络(CNNS)和局部聚合描述符(VLAD)层向量的火车能力的实用特征提取能力,我们提出了一种由前部组成的轻量级弱监管的端到端神经网络-anded的感知模型称为ghostcnn和学习的VLAD层作为后端。 Ghostcnn基于幽灵模块,这些模块是基于重量的CNN架构。它们可以使用线性操作而不是传统的卷积过程生成冗余特征映射,从而在计算资源和识别准确性之间进行良好的权衡。为了进一步增强我们提出的轻量级模型,我们将扩张的卷曲添加到Ghost模块中,以获取包含更多空间语义信息的功能,提高准确性。最后,在常用的公共基准和我们的私人数据集上进行的丰富实验验证了所提出的神经网络,分别将VGG16-NetVlad的拖鞋和参数减少了99.04%和80.16%。此外,两种模型都达到了类似的准确性。
translated by 谷歌翻译