最佳运输(OT)理论下潜许多新兴机器学习(ML)方法现在解决了各种任务,例如生成建模,转移学习和信息检索。然而,这些后者通常会在传统的OT设置上具有两个分布,同时留下更一般的多边缘OT配方,稍微探索。在本文中,我们研究了多边缘OT(MMOT)问题,并通过促进关于耦合的结构信息,统一其伞下的几种流行的OT方法。我们表明将这种结构信息结合到MMOT中,在允许我们在数值上解决它的不同凸(DC)编程问题的实例。尽管后一级的计算成本高,但DC优化提供的解决方案通常与使用当前采用的优化方案获得的解决方案一样定性。
translated by 谷歌翻译
这项工作研究如何在不平衡最佳运输(OT)模型中引入熵正则化术语可能会改变其同质性相对于输入措施的均匀性。我们观察到在共同设置中(包括平衡OT和不平衡的OT,带有kullback-Leibler对边缘的分歧),尽管最佳的运输成本本身不是均匀的,最佳的运输计划和所谓的烟道分流确实是均匀的。然而,同质性不会在更一般的不平衡正则化最佳运输(围绕)模型中,例如使用总变化与边际的分歧的更常见的模型。我们建议修改熵正则化术语以检索围类的屏幕模型,同时保留标准屏幕模型的大多数属性。我们展示在用边界进行最佳运输时使用我们的同质围嘴(Hurot)模型的重要性,运输模型涉及到标准(不均匀)围局模型将产生不恰当行为的边缘地区的空间变化的差异。
translated by 谷歌翻译
最佳运输(OT)自然地出现在广泛的机器学习应用中,但可能经常成为计算瓶颈。最近,一行作品建议大致通过在低秩子空间中搜索\ emph {transport计划}来解决OT。然而,最佳运输计划通常不是低秩,这往往会产生大的近似误差。例如,当存在Monge的\ EMPH {Transport Map}时,运输计划是完整的排名。本文涉及具有足够精度和效率的OT距离的计算。提出了一种用于OT的新颖近似,其中运输计划可以分解成低级矩阵和稀疏矩阵的总和。理论上我们分析近似误差。然后设计增强拉格朗日方法以有效地计算运输计划。
translated by 谷歌翻译
我们研究了两种可能不同质量的度量之间的不平衡最佳运输(UOT),其中最多是$ n $组件,其中标准最佳运输(OT)的边际约束是通过kullback-leibler差异与正则化因子$ \ tau $放松的。尽管仅在文献中分析了具有复杂性$ o \ big(\ tfrac {\ tau n^2 \ log(n)} {\ varepsilon} \ log \ big(\ tfrac {\ log( n)} {{{\ varepsilon}} \ big)\ big)$)$用于实现错误$ \ varepsilon $,它们与某些深度学习模型和密集的输出运输计划不兼容,强烈阻碍了实用性。虽然被广泛用作计算现代深度学习应用中UOT的启发式方法,并且在稀疏的OT中表现出成功,但尚未正式研究用于UOT的梯度方法。为了填补这一空白,我们提出了一种基于梯度外推法(Gem-uot)的新颖算法,以找到$ \ varepsilon $ -Approximate解决方案,以解决$ o \ big中的UOT问题(\ kappa n^2 \ log \ log \ big(big) \ frac {\ tau n} {\ varepsilon} \ big)\ big)$,其中$ \ kappa $是条件号,具体取决于两个输入度量。我们的算法是通过优化平方$ \ ell_2 $ -norm UOT目标的新的双重配方设计的,从而填补了缺乏稀疏的UOT文献。最后,我们在运输计划和运输距离方面建立了UOT和OT之间近似误差的新颖表征。该结果阐明了一个新的主要瓶颈,该瓶颈被强大的OT文献忽略了:尽管OT放松了OT,因为UOT承认对离群值的稳健性,但计算出的UOT距离远离原始OT距离。我们通过基于Gem-uot从UOT中检索的原则方法来解决此类限制,并使用微调的$ \ tau $和后进程投影步骤来解决。关于合成和真实数据集的实验验证了我们的理论,并证明了我们的方法的良好性能。
translated by 谷歌翻译
比较图形等结构的对象是许多学习任务中涉及的基本操作。为此,基于最优传输(OT)的Gromov-Wasserstein(GW)距离已被证明可以成功处理相关对象的特定性质。更具体地说,通过节点连接关系,GW在图表上运行,视为特定空间上的概率测量。在OT的核心处是质量守恒的想法,这在两个被认为的图表中的所有节点之间施加了耦合。我们在本文中争辩说,这种财产可能对图形字典或分区学习等任务有害,我们通过提出新的半轻松的Gromov-Wasserstein发散来放松它。除了立即计算福利之外,我们讨论其属性,并表明它可以导致有效的图表字典学习算法。我们经验展示其对图形上的复杂任务的相关性,例如分区,聚类和完成。
translated by 谷歌翻译
不平衡最佳传输(UOT)扩展了最佳传输(OT),以考虑质量变化以比较分布。这是使IT在ML应用程序中成功的至关重要,使其对数据标准化和异常值具有强大。基线算法陷入沉降,但其收敛速度可能比OT更慢。在这项工作中,我们确定了这种缺陷的原因,即缺乏迭代的全球正常化,其等效地对应于双口电的翻译。我们的第一款贡献利用了这种想法来开发一种可怕的加速陷阱算法(为UOT开发了一种可怕的陷阱算法(创建了“翻译不变的烟囱”),弥合了与OT的计算间隙。我们的第二次贡献侧重于1-D UOT,并提出了一个适用于这种翻译不变制剂的弗兰克 - 沃尔夫求解器。每个步骤的线性oracle都能求解1-D OT问题,从而导致每个迭代的线性时间复杂度。我们的最后贡献将这种方法扩展到计算1-D措施的UOT BaryCenter。数值模拟展示这三种方法带来的收敛速度改进。
translated by 谷歌翻译
最佳运输(OT)背后的匹配原理在机器学习中起着越来越重要的作用,这一趋势可以观察到ot被用来消除应用程序中的数据集(例如,单细胞基因组学)或用于改善更复杂的方法(例如,平衡平衡)注意变形金刚或自我监督的学习)。为了扩展到更具挑战性的问题,越来越多的共识要求求解器可以在数百万而不是数千点上运作。在\ cite {scetbon2021lowrank}中提倡的低级最佳运输方法(LOT)方法在这方面有几个诺言,并被证明可以补充更确定的熵正则化方法,能够将自己插入更复杂的管道中,例如Quadratic OT。批次将低成本耦合的搜索限制在具有低位级等级的耦合方面,在感兴趣的情况下产生线性时间算法。但是,只有在比较感兴趣的属性时,只有将批次方法视为熵正则化的合法竞争者,这些诺言才能实现,记分卡通常包含理论属性(统计复杂性和与其他方法)或实际方面(偏见,偏见,偏见,依据,,依据,统计复杂性和关系)高参数调整,初始化)。我们针对本文中的每个领域,以巩固计算OT中低级别方法的影响。
translated by 谷歌翻译
We study a family of adversarial multiclass classification problems and provide equivalent reformulations in terms of: 1) a family of generalized barycenter problems introduced in the paper and 2) a family of multimarginal optimal transport problems where the number of marginals is equal to the number of classes in the original classification problem. These new theoretical results reveal a rich geometric structure of adversarial learning problems in multiclass classification and extend recent results restricted to the binary classification setting. A direct computational implication of our results is that by solving either the barycenter problem and its dual, or the MOT problem and its dual, we can recover the optimal robust classification rule and the optimal adversarial strategy for the original adversarial problem. Examples with synthetic and real data illustrate our results.
translated by 谷歌翻译
本文介绍了一种新的基于仿真的推理程序,以对访问I.I.D. \ samples的多维概率分布进行建模和样本,从而规避明确建模密度函数或设计Markov Chain Monte Carlo的通常方法。我们提出了一个称为可逆的Gromov-monge(RGM)距离的新概念的距离和同构的动机,并研究了RGM如何用于设计新的转换样本,以执行基于模拟的推断。我们的RGM采样器还可以估计两个异质度量度量空间之间的最佳对齐$(\ cx,\ mu,c _ {\ cx})$和$(\ cy,\ cy,\ nu,c _ {\ cy})$从经验数据集中,估计的地图大约将一个量度$ \ mu $推向另一个$ \ nu $,反之亦然。我们研究了RGM距离的分析特性,并在轻度条件下得出RGM等于经典的Gromov-Wasserstein距离。奇怪的是,与Brenier的两极分解结合了连接,我们表明RGM采样器以$ C _ {\ cx} $和$ C _ {\ cy} $的正确选择诱导了强度同构的偏见。研究了有关诱导采样器的收敛,表示和优化问题的统计率。还展示了展示RGM采样器有效性的合成和现实示例。
translated by 谷歌翻译
Entropic regularization provides a generalization of the original optimal transport problem. It introduces a penalty term defined by the Kullback-Leibler divergence, making the problem more tractable via the celebrated Sinkhorn algorithm. Replacing the Kullback-Leibler divergence with a general $f$-divergence leads to a natural generalization. The case of divergences defined by superlinear functions was recently studied by Di Marino and Gerolin. Using convex analysis, we extend the theory developed so far to include all $f$-divergences defined by functions of Legendre type, and prove that under some mild conditions, strong duality holds, optimums in both the primal and dual problems are attained, the generalization of the $c$-transform is well-defined, and we give sufficient conditions for the generalized Sinkhorn algorithm to converge to an optimal solution. We propose a practical algorithm for computing an approximate solution of the optimal transport problem with $f$-divergence regularization via the generalized Sinkhorn algorithm. Finally, we present experimental results on synthetic 2-dimensional data, demonstrating the effects of using different $f$-divergences for regularization, which influences convergence speed, numerical stability and sparsity of the optimal coupling.
translated by 谷歌翻译
最近表明,在光滑状态下,可以通过吸引统计误差上限可以有效地计算两个分布之间的平方Wasserstein距离。然而,而不是距离本身,生成建模等应用的感兴趣对象是底层的最佳运输地图。因此,需要为估计的地图本身获得计算和统计保证。在本文中,我们提出了第一种统计$ L ^ 2 $错误的第一批量算法几乎匹配了现有的最低限度用于平滑地图估计。我们的方法是基于解决具有无限尺寸的平方和重构的最佳运输的半双向配方,并导致样品数量的无尺寸多项式速率的算法,具有潜在指数的维度依赖性常数。
translated by 谷歌翻译
本文考虑了Barycentric编码模型(BCM)下的测量估计问题,其中假定未知的度量属于有限的已知测量集的Wasserstein-2 Barycenters集合。估计该模型下的度量等同于估计未知的Barycentric坐标。我们为BCM下的测量估计提供了新颖的几何,统计和计算见解,由三个主要结果组成。我们的第一个主要结果利用了Wasserstein-2空间的Riemannian几何形状,以提供恢复Barycentric坐标的程序,作为假设对真实参考度量访问的二次优化问题的解决方案。基本的几何见解是,该二次问题的参数是由从给定度量到定义BCM的参考度量的最佳位移图之间的内部产物确定的。然后,我们的第二个主要结果建立了一种算法,用于求解BCM中坐标的算法,当时通过I.I.D进行经验观察到所有测量。样品。我们证明了该算法的精确收敛速率 - 取决于基本措施的平稳性及其维度 - 从而保证其统计一致性。最后,我们证明了BCM和相关估计程序在三个应用领域的实用性:(i)高斯措施的协方差估计; (ii)图像处理; (iii)自然语言处理。
translated by 谷歌翻译
多边缘最优运输(MOT)是最佳运输到多个边缘的概括。最佳运输已经进化为许多机器学习应用中的重要工具,其多边缘扩展开辟了解决机器学习领域的新挑战。然而,MOT的使用很大程度上受到其计算复杂性的影响,其在边缘数量中呈指数级尺度。幸运的是,在许多应用程序中,例如重心或插值问题,成本函数遵守结构,最近被利用以开发有效的计算方法。在这项工作中,我们可以为这些方法推导计算范围。以$ N $积分支持$ M $ M $ M $ Myginal发行版,我们提供了$ \ Mathcal {\ Tilde O}(D(g)Mn ^ 2 \ epsilon ^ { - 2})$ \ \ epsilon $-Accuracy当问题与直径为D(g)$的树相关联时。对于Wassersein的特殊情况,这对应于星形树,我们的界限与现有的复杂性对齐。
translated by 谷歌翻译
假设我们在$ \ mathbb {r} ^ d $和predictor x中的响应变量y在$ \ mathbb {r} ^ d $,以便为$ d \ geq 1 $。在置换或未解释的回归中,我们可以访问x和y上的单独无序数据,而不是在通常回归中的(x,y)-pabes上的数据。到目前为止,在文献中,案件$ d = 1 $已收到关注,请参阅例如近期的纸张和杂草[信息和推理,8,619--717]和Balabdaoui等人。 [J.马赫。学习。 res,22(172),1-60]。在本文中,我们考虑使用$ d \ geq 1 $的一般多变量设置。我们表明回归函数的周期性单调性的概念足以用于置换/未解释的回归模型中的识别和估计。我们在允许的回归设置中研究置换恢复,并在基于Kiefer-WolfoItz的基于代索的计算高效且易用算法[ANN。数学。统计部。,27,887--906]非参数最大似然估计和来自最佳运输理论的技术。我们在高斯噪声的相关均方方向误差误差上提供显式上限。与之前的案件的工作$ d = 1 $一样,置换/未解释的设置涉及潜在的解卷积问题的慢速(对数)收敛率。数值研究证实了我们的理论分析,并表明所提出的方法至少根据上述事先工作中的方法进行了比例,同时在计算复杂性方面取得了大量减少。
translated by 谷歌翻译
作为度量度量空间的有效度量,Gromov-Wasserstein(GW)距离显示了匹配结构化数据(例如点云和图形)问题的潜力。但是,由于其较高的计算复杂性,其实践中的应用受到限制。为了克服这一挑战,我们提出了一种新颖的重要性稀疏方法,称为SPAR-GW,以有效地近似GW距离。特别是,我们的方法没有考虑密集的耦合矩阵,而是利用一种简单但有效的采样策略来构建稀疏的耦合矩阵,并使用几个计算进行更新。我们证明了所提出的SPAR-GW方法适用于GW距离,并以任意地面成本适用于GW距离,并且将复杂性从$ \ Mathcal {o}(n^4)$降低到$ \ Mathcal {o}(n^{2) +\ delta})$对于任意的小$ \ delta> 0 $。另外,该方法可以扩展到近似GW距离的变体,包括熵GW距离,融合的GW距离和不平衡的GW距离。实验表明,在合成和现实世界任务中,我们的SPAR-GW对最先进的方法的优越性。
translated by 谷歌翻译
最近,已经显示,与流行的基于Kullback Leibler(KL)的正则化不同,基于最佳运输(OT)的最大平均差异(MMD)正则化导致了对估计样品复杂性的无维度。另一方面,分别使用总变异和基于KL的正规化来定义有趣的指标类别(GHK)等有趣的指标类别和高斯 - 赫林格 - 坎托维奇(GHK)指标。但是,如果可以使用样品有效的MMD正则化定义适当的指标,则是一个空旷的问题。在这项工作中,我们不仅弥合了这一差距,而且进一步考虑了基于积分概率指标(IPM)的通用正规化家族,其中包括MMD作为特殊情况。我们提出了新颖的IPM正规化$ P $ - WASSERSTEIN风格的OT配方,并证明它们确实诱导了指标。尽管其中一些新型指标可以解释为IPM的虚拟卷积,但有趣的是,事实证明是GW和GHK指标的IPM-Analogues。最后,我们提出了基于样品的有限公式,用于估计平方-MMD正则化度量和相应的barycenter。我们从经验上研究了拟议指标的其他理想特性,并显示了它们在各种机器学习应用中的适用性。
translated by 谷歌翻译
给定数据点之间的一组差异测量值,确定哪种度量表示与输入测量最“一致”或最能捕获数据相关几何特征的度量是许多机器学习算法的关键步骤。现有方法仅限于特定类型的指标或小问题大小,因为在此类问题中有大量的度量约束。在本文中,我们提供了一种活跃的集合算法,即项目和忘记,该算法使用Bregman的预测,以解决许多(可能是指数)不平等约束的度量约束问题。我们提供了\ textsc {project and Hoses}的理论分析,并证明我们的算法会收敛到全局最佳解决方案,并以指数速率渐近地渐近地衰减了当前迭代的$ L_2 $距离。我们证明,使用我们的方法,我们可以解决三种类型的度量约束问题的大型问题实例:一般体重相关聚类,度量近距离和度量学习;在每种情况下,就CPU时间和问题尺寸而言,超越了艺术方法的表现。
translated by 谷歌翻译
Wassersein距离,植根于最佳运输(OT)理论,是在统计和机器学习的各种应用程序之间的概率分布之间的流行差异测量。尽管其结构丰富,但效用,但Wasserstein距离对所考虑的分布中的异常值敏感,在实践中阻碍了适用性。灵感来自Huber污染模型,我们提出了一种新的异常值 - 强大的Wasserstein距离$ \ mathsf {w} _p ^ \ varepsilon $,它允许从每个受污染的分布中删除$ \ varepsilon $异常块。与以前考虑的框架相比,我们的配方达到了高度定期的优化问题,使其更好地分析。利用这一点,我们对$ \ mathsf {w} _p ^ \ varepsilon $的彻底理论研究,包括最佳扰动,规律性,二元性和统计估算和鲁棒性结果的表征。特别是,通过解耦优化变量,我们以$ \ mathsf {w} _p ^ \ varepsilon $到达一个简单的双重形式,可以通过基于标准的基于二元性的OT响音器的基本修改来实现。我们通过应用程序来说明我们的框架的好处,以与受污染的数据集进行生成建模。
translated by 谷歌翻译
由于机器学习,统计和科学的应用,多边缘最佳运输(MOT)引起了极大的兴趣。但是,在大多数应用中,MOT的成功受到缺乏有效算法的严重限制。实际上,MOT一般需要在边际K及其支撑大小n的数量中指数时间n。本文开发了一个关于“结构”在poly(n,k)时间中可溶解的一般理论。我们开发了一个统一的算法框架,用于通过表征不同算法所需的“结构”来解决poly(n,k)时间中的MOT,这是根据双重可行性甲骨文的简单变体所需的。该框架有几个好处。首先,它使我们能够证明当前是最流行的MOT算法的Sinkhorn算法比其他算法要在poly(n,k)时间中求解MOT所需的结构更严格。其次,我们的框架使得为给定的MOT问题开发poly(n,k)时间算法变得更加简单。特别是(大约)解决双重可行性Oracle是必要和足够的 - 这更适合标准算法技术。我们通过为三个通用类成本结构类别的poly(n,k)时间算法开发poly(n,k)时间算法来说明这种易用性:(1)图形结构; (2)设定优化结构; (3)低阶和稀疏结构。对于结构(1),我们恢复了Sindhorn具有poly(n,k)运行时的已知结果;此外,我们为计算精确且稀疏的解决方案提供了第一个poly(n,k)时间算法。对于结构(2) - (3),我们给出了第一个poly(n,k)时间算法,甚至用于近似计算。这三个结构一起涵盖了许多MOT的当前应用。
translated by 谷歌翻译
We study distributionally robust optimization (DRO) with Sinkhorn distance -- a variant of Wasserstein distance based on entropic regularization. We provide convex programming dual reformulation for a general nominal distribution. Compared with Wasserstein DRO, it is computationally tractable for a larger class of loss functions, and its worst-case distribution is more reasonable. We propose an efficient first-order algorithm with bisection search to solve the dual reformulation. We demonstrate that our proposed algorithm finds $\delta$-optimal solution of the new DRO formulation with computation cost $\tilde{O}(\delta^{-3})$ and memory cost $\tilde{O}(\delta^{-2})$, and the computation cost further improves to $\tilde{O}(\delta^{-2})$ when the loss function is smooth. Finally, we provide various numerical examples using both synthetic and real data to demonstrate its competitive performance and light computational speed.
translated by 谷歌翻译