机器学习模型的培训和部署之间的分离意味着,在培训期间,并非所有部署中遇到的场景都可以预期,因此仅依靠培训的进步都有其限制。分布(OOD)检测是一个重要领域,强调模型处理看不见情况的能力:模型知道何时不知道吗?现有的OOD检测方法要么引起额外的训练步骤,其他数据或对训练的网络进行非平凡的修改。相比之下,在这项工作中,我们提出了一种非常简单的事后,即时激活塑形方法,灰分,其中大部分(例如90%)的样本激活在后层中被删除,然后删除休息(例如10%)简化或轻微调整。该塑形在推理时间应用,不需要根据培训数据计算出的任何统计数据。实验表明,这种简单的治疗可以增强分布和分布样本的区别,从而允许在ImageNet上进行最新的OOD检测,并且不会显着恶化分布的准确性。我们与论文一起释放了两个呼吁解释和验证的呼吁,他们相信集体权力进一步验证和理解这一发现。可以在:https://andrijazz.github.io/ash上找到电话,视频和代码
translated by 谷歌翻译
检测分销(OOD)输入是安全部署现实世界中的机器学习模型的中央挑战。以前的方法通常依赖于从过度分辨率的重量空间衍生的评分,同时在很大程度上忽略了稀疏的作用。在本文中,我们揭示了重要的见解,即依赖对不重要的权重和单位可以直接归因于“ood检测的脆性”。为了减轻这个问题,我们提出了一个基于稀疏的oo ood检测框架被称为骰子。我们的关键思想是基于贡献的衡量标准进行排序,并选择性地使用最突出的重量来导出OOD检测的输出。我们提供了实证和理论洞察力,表征和解释了骰子改善的机制。通过修剪嘈杂的信号,骰子可否降低OOD数据的输出方差,从而导致输出分布和更强的ID数据可分离。骰子表现出色,与先前的最佳方法相比,将FPR95减少至多24.69%。
translated by 谷歌翻译
由于其实际重要性,在提高神经网络安全部署方面的实际重要性,最近经济分配(OOD)检测最近受到了很大的关注。其中一个主要挑战是模型往往会对OOD数据产生高度自信的预测,这在ood检测中破坏了驾驶原理,即该模型应该仅对分布式样品充满信心。在这项工作中,我们提出了反应 - 一种简单有效的技术,用于减少对数据数据的模型过度限制。我们的方法是通过关于神经网络内部激活的新型分析,其为OOD分布显示出高度独特的签名模式。我们的方法可以有效地拓展到不同的网络架构和不同的OOD检测分数。我们经验证明,反应在全面的基准数据集套件上实现了竞争检测性能,并为我们的方法进行了理论解释。与以前的最佳方法相比,在ImageNet基准测试中,反应将假阳性率(FPR95)降低25.05%。
translated by 谷歌翻译
Detecting out-of-distribution (OOD) inputs during the inference stage is crucial for deploying neural networks in the real world. Previous methods commonly relied on the output of a network derived from the highly activated feature map. In this study, we first revealed that a norm of the feature map obtained from the other block than the last block can be a better indicator of OOD detection. Motivated by this, we propose a simple framework consisting of FeatureNorm: a norm of the feature map and NormRatio: a ratio of FeatureNorm for ID and OOD to measure the OOD detection performance of each block. In particular, to select the block that provides the largest difference between FeatureNorm of ID and FeatureNorm of OOD, we create Jigsaw puzzle images as pseudo OOD from ID training samples and calculate NormRatio, and the block with the largest value is selected. After the suitable block is selected, OOD detection with the FeatureNorm outperforms other OOD detection methods by reducing FPR95 by up to 52.77% on CIFAR10 benchmark and by up to 48.53% on ImageNet benchmark. We demonstrate that our framework can generalize to various architectures and the importance of block selection, which can improve previous OOD detection methods as well.
translated by 谷歌翻译
检测到分布输入对于在现实世界中安全部署机器学习模型至关重要。然而,已知神经网络遭受过度自信的问题,在该问题中,它们对分布和分布的输入的信心异常高。在这项工作中,我们表明,可以通过在训练中实施恒定的向量规范来通过logit归一化(logitnorm)(logitnorm)来缓解此问题。我们的方法是通过分析的激励,即logit的规范在训练过程中不断增加,从而导致过度自信的产出。因此,LogitNorm背后的关键思想是将网络优化期间输出规范的影响解散。通过LogitNorm培训,神经网络在分布数据和分布数据之间产生高度可区分的置信度得分。广泛的实验证明了LogitNorm的优势,在公共基准上,平均FPR95最高为42.30%。
translated by 谷歌翻译
分发(OOD)检测的任务对于在现实世界中部署机器学习模型至关重要。在本文中,我们观察到分布(ID)和OOD特征的奇异值分布截然不同:OOD特征矩阵倾向于具有比ID特征更大的优势奇异值,并且OOD样本的类预测在很大程度上取决于它。该观察结果促使我们提出\ texttt {rankfeat},这是一种简单而有效的\ texttt {post hoc}方法,通过删除由最大的单数值和相关的单数矢量组成的rank-1矩阵,从(\ emph { \ texttt {rankfeat}达到\ emph {最新的}性能,并将平均误报率(FPR95)降低了17.90 \%,与以前的最佳方法相比。提供了广泛的消融研究和全面的理论分析,以支持经验结果。
translated by 谷歌翻译
Deep neural networks have attained remarkable performance when applied to data that comes from the same distribution as that of the training set, but can significantly degrade otherwise. Therefore, detecting whether an example is out-of-distribution (OoD) is crucial to enable a system that can reject such samples or alert users. Recent works have made significant progress on OoD benchmarks consisting of small image datasets. However, many recent methods based on neural networks rely on training or tuning with both in-distribution and out-of-distribution data. The latter is generally hard to define a-priori, and its selection can easily bias the learning. We base our work on a popular method ODIN 1 [21], proposing two strategies for freeing it from the needs of tuning with OoD data, while improving its OoD detection performance. We specifically propose to decompose confidence scoring as well as a modified input pre-processing method. We show that both of these significantly help in detection performance. Our further analysis on a larger scale image dataset shows that the two types of distribution shifts, specifically semantic shift and non-semantic shift, present a significant difference in the difficulty of the problem, providing an analysis of when ODIN-like strategies do or do not work.
translated by 谷歌翻译
深度神经网络具有令人印象深刻的性能,但是他们无法可靠地估计其预测信心,从而限制了其在高风险领域中的适用性。我们表明,应用多标签的一VS损失揭示了分类的歧义并降低了模型的过度自信。引入的Slova(单标签One-Vs-All)模型重新定义了单个标签情况的典型单VS-ALL预测概率,其中只有一个类是正确的答案。仅当单个类具有很高的概率并且其他概率可忽略不计时,提议的分类器才有信心。与典型的SoftMax函数不同,如果所有其他类的概率都很小,Slova自然会检测到分布的样本。该模型还通过指数校准进行了微调,这使我们能够与模型精度准确地对齐置信分数。我们在三个任务上验证我们的方法。首先,我们证明了斯洛伐克与最先进的分布校准具有竞争力。其次,在数据集偏移下,斯洛伐克的性能很强。最后,我们的方法在检测到分布样品的检测方面表现出色。因此,斯洛伐克是一种工具,可以在需要不确定性建模的各种应用中使用。
translated by 谷歌翻译
检测到分布(OOD)数据是一项任务,它正在接受计算机视觉的深度学习领域越来越多的研究注意力。但是,通常在隔离任务上评估检测方法的性能,而不是考虑串联中的潜在下游任务。在这项工作中,我们检查了存在OOD数据(SCOD)的选择性分类。也就是说,检测OOD样本的动机是拒绝它们,以便降低它们对预测质量的影响。我们在此任务规范下表明,与仅在OOD检测时进行评估时,现有的事后方法的性能大不相同。这是因为如果ID数据被错误分类,将分布分配(ID)数据与OOD数据混合在一起的问题不再是一个问题。但是,正确和不正确的预测的ID数据中的汇合变得不受欢迎。我们还提出了一种新颖的SCOD,SoftMax信息保留(SIRC)的方法,该方法通过功能不足信息来增强基于软疗法的置信度得分,以便在不牺牲正确和错误的ID预测之间的分离的情况下,可以提高其识别OOD样品的能力。在各种成像网尺度数据集和卷积神经网络体系结构上进行的实验表明,SIRC能够始终如一地匹配或胜过SCOD的基线,而现有的OOD检测方法则无法做到。
translated by 谷歌翻译
本文我们的目标是利用异质的温度缩放作为校准策略(OOD)检测。此处的异质性是指每个样品的最佳温度参数可能不同,而不是传统的方法对整个分布使用相同的值。为了实现这一目标,我们提出了一种称为锚定的新培训策略,可以估算每个样品的适当温度值,从而导致几个基准的最新OOD检测性能。使用NTK理论,我们表明该温度函数估计与分类器的认知不确定性紧密相关,这解释了其行为。与某些表现最佳的OOD检测方法相反,我们的方法不需要暴露于其他离群数据集,自定义校准目标或模型结合。通过具有不同OOD检测设置的经验研究 - 远处,OOD附近和语义相干OOD - 我们建立了一种高效的OOD检测方法。可以在此处访问代码和模型-https://github.com/rushilanirudh/amp
translated by 谷歌翻译
已知神经网络在输入图像上产生过度自信的预测,即使这些图像不存在(OOD)样本。这限制了神经网络模型在存在OOD样本的实际场景中的应用。许多现有方法通过利用各种提示来确定OOD实例,例如在特征空间,逻辑空间,梯度空间或图像的原始空间中查找不规则模式。相反,本文提出了一种简单的测试时间线性训练(ETLT)用于OOD检测方法。从经验上讲,我们发现输入图像的概率不存在,与神经网络提取的功能令人惊讶地线性相关。具体来说,许多最先进的OOD算法虽然旨在以不同的方式衡量可靠性,但实际上导致OOD得分主要与其图像特征线性相关。因此,通过简单地学习从配对图像特征训练并在测试时间推断的OOD分数的线性回归模型,我们可以为测试实例做出更精确的OOD预测。我们进一步提出了该方法的在线变体,该变体可以实现有希望的性能,并且在现实世界中更为实用。值得注意的是,我们将FPR95从$ 51.37 \%$提高到CIFAR-10数据集的$ 12.30 \%$,最大的SoftMax概率是基本的OOD检测器。在几个基准数据集上进行的广泛实验显示了ETLT对OOD检测任务的功效。
translated by 谷歌翻译
我们引入强大的想法,从超比计算到有挑战性领域的分布外(OOD)检测。与基于单个神经网络的单层执行的大多数现有的工作相比,我们使用相似性的半正交投影矩阵来将来自多个层的特征映射投影成公共矢量空间。通过反复应用捆绑操作$ \ oplus $,我们为所有分布类创建特定于特定于特定于特定的描述符向量。在测试时间时,描述符矢量之间的简单高效的余弦相似性计算一致地识别具有比当前最先进的性能更好的ood样本。我们表明,多维网络层的超级融合对于实现最佳的普遍表现至关重要。
translated by 谷歌翻译
神经网络在分布中的数据中取得了令人印象深刻的性能,该数据与训练集相同,但可以为这些网络从未见过的数据产生过分自信的结果。因此,至关重要的是要检测输入是否来自分布(OOD),以确保现实世界中部署的神经网络的安全性。在本文中,我们提出了一种简单有效的事后技术Weshort,以减少神经网络对OOD数据的过度自信。我们的方法灵感来自对内部残留结构的观察,该结构显示了捷径层中OOD和分布(ID)数据的分离。我们的方法与不同的OOD检测分数兼容,并且可以很好地推广到网络的不同体系结构。我们在各种OOD数据集上演示了我们的方法,以展示其竞争性能,并提供合理的假设,以解释我们的方法为何起作用。在Imagenet基准测试上,Weshort在假阳性率(FPR95)和接收器操作特征(AUROC)下实现了最先进的性能(在事后方法)上。
translated by 谷歌翻译
在推理时间检测到分布(OOD)数据对于机器学习的许多应用至关重要。我们提出Xood:一个新型的基于极值的OOD检测框架,用于图像分类,由两种算法组成。第一个是Xood-M完全无监督,而第二个Xood-L则是自我监督的。两种算法都依赖于神经网络激活层中数据的极端值捕获的信号,以区分分布和OOD实例。我们通过实验表明,Xood-M和Xood-l均优于效率和准确性的许多基准数据集的最先进的OOD检测方法,从而将虚假阳性率(FPR95)降低了50%,同时改善了推论时间数量级。
translated by 谷歌翻译
已知现代深度神经网络模型将错误地将分布式(OOD)测试数据分类为具有很高信心的分数(ID)培训课程之一。这可能会对关键安全应用产生灾难性的后果。一种流行的缓解策略是训练单独的分类器,该分类器可以在测试时间检测此类OOD样本。在大多数实际设置中,在火车时间尚不清楚OOD的示例,因此,一个关键问题是:如何使用合成OOD样品来增加ID数据以训练这样的OOD检测器?在本文中,我们为称为CNC的OOD数据增强提出了一种新颖的复合腐败技术。 CNC的主要优点之一是,除了培训集外,它不需要任何固定数据。此外,与当前的最新技术(SOTA)技术不同,CNC不需要在测试时间进行反向传播或结合,从而使我们的方法在推断时更快。我们与过去4年中主要会议的20种方法进行了广泛的比较,表明,在OOD检测准确性和推理时间方面,使用基于CNC的数据增强训练的模型都胜过SOTA。我们包括详细的事后分析,以研究我们方法成功的原因,并确定CNC样本的较高相对熵和多样性是可能的原因。我们还通过对二维数据集进行零件分解分析提供理论见解,以揭示(视觉和定量),我们的方法导致ID类别周围的边界更紧密,从而更好地检测了OOD样品。源代码链接:https://github.com/cnc-ood
translated by 谷歌翻译
Out-of-Distribution (OOD) detection, i.e., identifying whether an input is sampled from a novel distribution other than the training distribution, is a critical task for safely deploying machine learning systems in the open world. Recently, post hoc detection utilizing pre-trained models has shown promising performance and can be scaled to large-scale problems. This advance raises a natural question: Can we leverage the diversity of multiple pre-trained models to improve the performance of post hoc detection methods? In this work, we propose a detection enhancement method by ensembling multiple detection decisions derived from a zoo of pre-trained models. Our approach uses the p-value instead of the commonly used hard threshold and leverages a fundamental framework of multiple hypothesis testing to control the true positive rate of In-Distribution (ID) data. We focus on the usage of model zoos and provide systematic empirical comparisons with current state-of-the-art methods on various OOD detection benchmarks. The proposed ensemble scheme shows consistent improvement compared to single-model detectors and significantly outperforms the current competitive methods. Our method substantially improves the relative performance by 65.40% and 26.96% on the CIFAR10 and ImageNet benchmarks.
translated by 谷歌翻译
Determining whether inputs are out-of-distribution (OOD) is an essential building block for safely deploying machine learning models in the open world. However, previous methods relying on the softmax confidence score suffer from overconfident posterior distributions for OOD data. We propose a unified framework for OOD detection that uses an energy score. We show that energy scores better distinguish in-and out-of-distribution samples than the traditional approach using the softmax scores. Unlike softmax confidence scores, energy scores are theoretically aligned with the probability density of the inputs and are less susceptible to the overconfidence issue. Within this framework, energy can be flexibly used as a scoring function for any pre-trained neural classifier as well as a trainable cost function to shape the energy surface explicitly for OOD detection. On a CIFAR-10 pre-trained WideResNet, using the energy score reduces the average FPR (at TPR 95%) by 18.03% compared to the softmax confidence score. With energy-based training, our method outperforms the state-of-the-art on common benchmarks.
translated by 谷歌翻译
在现实世界中的视觉应用中检测分布(OOD)样本(例如分类或对象检测)已成为当今深度学习系统部署的必要前提。已经提出了许多技术,其中已证明基于能量的OOD方法是有希望和令人印象深刻的性能。我们提出了基于语义驱动的能量方法,这是一种端到端的可训练系统,易于优化。我们将分布样品与能量评分和表示分数结合的外部分布样品区分开。我们通过最大程度地降低分布样品的能量来实现这一目标,并同时学习各自的类表征,这些类别更接近和最大化能量以供外分发样品,并将其从已知的类表征进一步推出。此外,我们提出了一种新颖的损失功能,我们称之为群集局灶性损失(CFL),事实证明这很简单,但在学习更好的班级群集中心表示方面非常有效。我们发现,我们的新方法可以增强异常检测,并在共同基准上获得基于能量的模型。与现有基于能量的方法相比,在CIFAR-10和CIFAR-100训练的WideSnet上,我们的模型分别将相对平均假正(以95%的真实正率为95%)降低67.2%和57.4%。此外,我们扩展了对象检测的框架并提高了性能。
translated by 谷歌翻译
通过增强模型,输入示例,培训集和优化目标,已经提出了各种方法进行分发(OOD)检测。偏离现有工作,我们有一个简单的假设,即标准的离心模型可能已经包含有关训练集分布的足够信息,这可以利用可靠的ood检测。我们对验证这一假设的实证研究,该假设测量了模型激活的模型和分布(ID)迷你批次,发现OOD Mini-Batches的激活手段一直偏离培训数据的培训数据。此外,培训数据的激活装置可以从批量归一化层作为“自由午餐”中有效地计算或从批量归一化层次上检索。基于该观察,我们提出了一种名为神经平均差异(NMD)的新型度量,其比较了输入示例和训练数据的神经手段。利用NMD的简单性,我们提出了一种有效的OOD探测器,通过标准转发通道来计算神经手段,然后是轻量级分类器。广泛的实验表明,在检测精度和计算成本方面,NMD跨越多个数据集和模型架构的最先进的操作。
translated by 谷歌翻译
作为研究界,我们仍然缺乏对对抗性稳健性的进展的系统理解,这通常使得难以识别训练强大模型中最有前途的想法。基准稳健性的关键挑战是,其评估往往是出错的导致鲁棒性高估。我们的目标是建立对抗性稳健性的标准化基准,尽可能准确地反映出考虑在合理的计算预算范围内所考虑的模型的稳健性。为此,我们首先考虑图像分类任务并在允许的型号上引入限制(可能在将来宽松)。我们评估了与AutoAtrack的对抗鲁棒性,白和黑箱攻击的集合,最近在大规模研究中显示,与原始出版物相比,改善了几乎所有稳健性评估。为防止对自动攻击进行新防御的过度适应,我们欢迎基于自适应攻击的外部评估,特别是在自动攻击稳健性潜在高估的地方。我们的排行榜,托管在https://robustbench.github.io/,包含120多个模型的评估,并旨在反映在$ \ ell_ \ infty $的一套明确的任务上的图像分类中的当前状态 - 和$ \ ell_2 $ -Threat模型和共同腐败,未来可能的扩展。此外,我们开源源是图书馆https://github.com/robustbench/robustbench,可以提供对80多个强大模型的统一访问,以方便他们的下游应用程序。最后,根据收集的模型,我们分析了稳健性对分布换档,校准,分配检测,公平性,隐私泄漏,平滑度和可转移性的影响。
translated by 谷歌翻译