可解释的人工智能是一个研究领域,试图为自动智能系统提供更透明度。已经使用了解释性,尤其是在强化学习和机器人场景中,以更好地了解机器人决策过程。然而,以前的工作已广泛专注于提供技术解释,而不是非专家最终用户可以更好地理解的技术解释。在这项工作中,我们利用从成功的可能性中构建的类似人类的解释来完成自主机器人执行动作后显示的目标。这些解释旨在由没有或很少有人工智能方法经验的人来理解。本文提出了一项用户试验,以研究这些解释的重点是成功实现其目标的概率的解释是否构成了非专家最终用户的合适解释。获得的结果表明,与Q值产生的技术解释相比,非专业参与者的评分机器人的解释侧重于更高的成功概率和差异的差异,并且也赞成反事实解释而不是独立解释。
translated by 谷歌翻译
Reinforcement learning is a machine learning approach based on behavioral psychology. It is focused on learning agents that can acquire knowledge and learn to carry out new tasks by interacting with the environment. However, a problem occurs when reinforcement learning is used in critical contexts where the users of the system need to have more information and reliability for the actions executed by an agent. In this regard, explainable reinforcement learning seeks to provide to an agent in training with methods in order to explain its behavior in such a way that users with no experience in machine learning could understand the agent's behavior. One of these is the memory-based explainable reinforcement learning method that is used to compute probabilities of success for each state-action pair using an episodic memory. In this work, we propose to make use of the memory-based explainable reinforcement learning method in a hierarchical environment composed of sub-tasks that need to be first addressed to solve a more complex task. The end goal is to verify if it is possible to provide to the agent the ability to explain its actions in the global task as well as in the sub-tasks. The results obtained showed that it is possible to use the memory-based method in hierarchical environments with high-level tasks and compute the probabilities of success to be used as a basis for explaining the agent's behavior.
translated by 谷歌翻译
最后,这项工作将包括对解释的上下文形式的调查。在这项研究中,我们将包括一个时间障碍的方案,其中将测试不同水平的理解水平,以使我们能够评估合适且可理解的解释。为此,我们提出了不同的理解水平(lou)。用户研究将旨在比较不同的LOU在不同的互动环境中。将研究同时医院环境的用户研究。
translated by 谷歌翻译
在本文中,我们研究了不确定性下的顺序决策任务中可读性的概念。以前的作品将易读性扩展到了机器人运动以外的方案,要么集中在确定性设置上,要么在计算上太昂贵。我们提出的称为POL-MDP的方法能够处理不确定性,同时保持计算障碍。在几种不同复杂性的模拟场景中,我们建立了反对最新方法的方法的优势。我们还展示了将我们的清晰政策用作反向加强学习代理的示范,并根据最佳政策建立了他们的优越性。最后,我们通过用户研究评估计算政策的可读性,在该研究中,要求人们通过观察其行动来推断移动机器人的目标。
translated by 谷歌翻译
交互式增强学习建议使用外部信息,以加快学习过程。当与学习者互动时,人类可以提供评估或有益的建议。先前的研究通过在交互式增强学习过程中包括实时反馈,专门旨在提高代理商的学习速度,同时最大程度地减少对人类的时间的需求,从而重点关注人类建议的效果。这项工作重点是回答两种评估或信息性的方法中的哪种是人类的首选教学方法。此外,这项工作为人类试验提供了实验设置,旨在比较人们用来提供人类参与建议的方法。获得的结果表明,向学习者提供信息的用户提供了更准确的建议,愿意在更长的时间内为学习者提供帮助,并每集提供更多建议。此外,使用信息丰富的方法的参与者的自我评估表明,与提供评估建议的人相比,代理商遵循建议的能力更高,因此,他们认为自己的建议的准确性更高。
translated by 谷歌翻译
可解释的人工智能的最新发展有望改变人类机器人互动的潜力:机器人决策的解释可能会影响用户的看法,证明其可靠性并提高信任。但是,尚未对解释其决定的机器人看法的影响进行彻底研究。为了分析可解释的机器人的效果,我们进行了一项研究,其中两个模拟机器人可以玩竞争性棋盘游戏。当一个机器人解释其动作时,另一个机器人只宣布它们。提供有关其行为的解释不足以改变机器人的感知能力,智力,可爱性或安全等级。但是,结果表明,解释其动作的机器人被认为是更活泼和人类的。这项研究证明了对可解释的人类机器人相互作用的必要性和潜力,以及对其效应作为新的研究方向的更广泛评估。
translated by 谷歌翻译
事实证明,在学习环境中,社会智能代理(SIA)的部署在不同的应用领域具有多个优势。社会代理创作工具使场景设计师能够创造出对SIAS行为的高度控制的量身定制体验,但是,另一方面,这是有代价的,因为该方案及其创作的复杂性可能变得霸道。在本文中,我们介绍了可解释的社会代理创作工具的概念,目的是分析社会代理的创作工具是否可以理解和解释。为此,我们检查了创作工具Fatima-Toolkit是否可以理解,并且从作者的角度来看,其创作步骤可以解释。我们进行了两项用户研究,以定量评估Fatima-Toolkit的解释性,可理解性和透明度,从场景设计师的角度来看。关键发现之一是,法蒂玛 - 库尔基特(Fatima-Toolkit)的概念模型通常是可以理解的,但是基于情感的概念并不那么容易理解和使用。尽管关于Fatima-Toolkit的解释性有一些积极的方面,但仍需要取得进展,以实现完全可以解释的社会代理商创作工具。我们提供一组关键概念和可能的解决方案,可以指导开发人员构建此类工具。
translated by 谷歌翻译
自2015年首次介绍以来,深入增强学习(DRL)方案的使用已大大增加。尽管在许多不同的应用中使用了使用,但他们仍然存在缺乏可解释性的问题。面包缺乏对研究人员和公众使用DRL解决方案的使用。为了解决这个问题,已经出现了可解释的人工智能(XAI)领域。这是各种不同的方法,它们希望打开DRL黑框,范围从使用可解释的符号决策树到诸如Shapley值之类的数值方法。这篇评论研究了使用哪些方法以及使用了哪些应用程序。这样做是为了确定哪些模型最适合每个应用程序,或者是否未充分利用方法。
translated by 谷歌翻译
最近的自主代理和机器人的应用,如自动驾驶汽车,情景的培训师,勘探机器人和服务机器人带来了关注与当前生成人工智能(AI)系统相关的至关重要的信任相关挑战。尽管取得了巨大的成功,基于连接主义深度学习神经网络方法的神经网络方法缺乏解释他们对他人的决策和行动的能力。没有符号解释能力,它们是黑色盒子,这使得他们的决定或行动不透明,这使得难以信任它们在安全关键的应用中。最近对AI系统解释性的立场目睹了可解释的人工智能(XAI)的几种方法;然而,大多数研究都专注于应用于计算科学中的数据驱动的XAI系统。解决越来越普遍的目标驱动器和机器人的研究仍然缺失。本文评论了可解释的目标驱动智能代理和机器人的方法,重点是解释和沟通代理人感知功能的技术(示例,感官和愿景)和认知推理(例如,信仰,欲望,意图,计划和目标)循环中的人类。审查强调了强调透明度,可辨与和持续学习以获得解释性的关键策略。最后,本文提出了解释性的要求,并提出了用于实现有效目标驱动可解释的代理和机器人的路线图。
translated by 谷歌翻译
Many works in explainable AI have focused on explaining black-box classification models. Explaining deep reinforcement learning (RL) policies in a manner that could be understood by domain users has received much less attention. In this paper, we propose a novel perspective to understanding RL policies based on identifying important states from automatically learned meta-states. The key conceptual difference between our approach and many previous ones is that we form meta-states based on locality governed by the expert policy dynamics rather than based on similarity of actions, and that we do not assume any particular knowledge of the underlying topology of the state space. Theoretically, we show that our algorithm to find meta-states converges and the objective that selects important states from each meta-state is submodular leading to efficient high quality greedy selection. Experiments on four domains (four rooms, door-key, minipacman, and pong) and a carefully conducted user study illustrate that our perspective leads to better understanding of the policy. We conjecture that this is a result of our meta-states being more intuitive in that the corresponding important states are strong indicators of tractable intermediate goals that are easier for humans to interpret and follow.
translated by 谷歌翻译
可接受的是指对象允许的可能动作的感知。尽管其与人计算机相互作用有关,但没有现有理论解释了支撑无力形成的机制;也就是说,通过交互发现和适应的充分性。基于认知科学的加固学习理论,提出了一种综合性的无力形成理论。关键假设是用户学习在存在增强信号(成功/故障)时将有前途的电机动作与经验相关联。他们还学会分类行动(例如,“旋转”拨号),使他们能够命名和理由的能力。在遇到新颖的小部件时,他们概括这些行动的能力决定了他们感受到的能力。我们在虚拟机器人模型中实现了这个理论,它展示了在交互式小部件任务中的人性化适应性。虽然其预测与人类数据的趋势对齐,但人类能够更快地适应能力,表明存在额外机制。
translated by 谷歌翻译
支持用户日常生活的代理商不仅需要考虑用户的特征,还要考虑用户的社交状况。现有在包括社交环境的工作使用某种类型的情况提示作为信息处理技术的输入,以评估用户的预期行为。但是,研究表明,确定情况的含义非常重要,这是我们称之为社会状况理解的步骤。我们建议使用情境的心理特征,这些情况在社会科学中提出了将含义归因于情境,作为社会状况理解的基础。使用来自用户研究的数据,我们从两个角度评估了该建议。首先,从技术角度来看,我们表明,情况的心理特征可以用作预测社会情况优先级的投入,并且可以从社会状况的特征中预测情况的心理特征。其次,我们研究了理解步骤在人机含义制造中的作用。我们表明,心理特征可以成功地用作向用户解释议程管理个人助理代理商的决定的基础。
translated by 谷歌翻译
There has been a recent resurgence in the area of explainable artificial intelligence as researchers and practitioners seek to make their algorithms more understandable. Much of this research is focused on explicitly explaining decisions or actions to a human observer, and it should not be controversial to say that looking at how humans explain to each other can serve as a useful starting point for explanation in artificial intelligence. However, it is fair to say that most work in explainable artificial intelligence uses only the researchers' intuition of what constitutes a 'good' explanation. There exists vast and valuable bodies of research in philosophy, psychology, and cognitive science of how people define, generate, select, evaluate, and present explanations, which argues that people employ certain cognitive biases and social expectations towards the explanation process. This paper argues that the field of explainable artificial intelligence should build on this existing research, and reviews relevant papers from philosophy, cognitive psychology/science, and social psychology, which study these topics. It draws out some important findings, and discusses ways that these can be infused with work on explainable artificial intelligence.
translated by 谷歌翻译
Explainable AI (XAI) is widely viewed as a sine qua non for ever-expanding AI research. A better understanding of the needs of XAI users, as well as human-centered evaluations of explainable models are both a necessity and a challenge. In this paper, we explore how HCI and AI researchers conduct user studies in XAI applications based on a systematic literature review. After identifying and thoroughly analyzing 85 core papers with human-based XAI evaluations over the past five years, we categorize them along the measured characteristics of explanatory methods, namely trust, understanding, fairness, usability, and human-AI team performance. Our research shows that XAI is spreading more rapidly in certain application domains, such as recommender systems than in others, but that user evaluations are still rather sparse and incorporate hardly any insights from cognitive or social sciences. Based on a comprehensive discussion of best practices, i.e., common models, design choices, and measures in user studies, we propose practical guidelines on designing and conducting user studies for XAI researchers and practitioners. Lastly, this survey also highlights several open research directions, particularly linking psychological science and human-centered XAI.
translated by 谷歌翻译
我们专注于创建强化学习代理的任务,这是固有的解释 - 能够通过大声思考,在执行任务并分析后HOC后产生因果解释的整个轨迹来产生直接的当地解释。这种分层解释的加强学习代理(Hex-RL),以互动虚构,基于文本的游戏环境运营,其中代理人使用文本自然语言对世界感知和行为。这些游戏通常被构造为具有长期依赖的谜题或任务,其中代理商必须完成一系列行动,以便在其中提供理想的环境,以测试代理商解释其行为的能力。我们的代理旨在使用基于提取的符号知识图形的状态表示来处理作为一流的公民的可解释性,其与分层图注意机制耦合,该方法指向大多数影响行动选择的内部图形表示中的事实。实验表明,该代理提供了对强强基线的显着改进的解释,这是人类参与者通常不熟悉环境的评分,同时也匹配最先进的任务表现。
translated by 谷歌翻译
Reinforcement Learning (RL) is a popular machine learning paradigm where intelligent agents interact with the environment to fulfill a long-term goal. Driven by the resurgence of deep learning, Deep RL (DRL) has witnessed great success over a wide spectrum of complex control tasks. Despite the encouraging results achieved, the deep neural network-based backbone is widely deemed as a black box that impedes practitioners to trust and employ trained agents in realistic scenarios where high security and reliability are essential. To alleviate this issue, a large volume of literature devoted to shedding light on the inner workings of the intelligent agents has been proposed, by constructing intrinsic interpretability or post-hoc explainability. In this survey, we provide a comprehensive review of existing works on eXplainable RL (XRL) and introduce a new taxonomy where prior works are clearly categorized into model-explaining, reward-explaining, state-explaining, and task-explaining methods. We also review and highlight RL methods that conversely leverage human knowledge to promote learning efficiency and performance of agents while this kind of method is often ignored in XRL field. Some challenges and opportunities in XRL are discussed. This survey intends to provide a high-level summarization of XRL and to motivate future research on more effective XRL solutions. Corresponding open source codes are collected and categorized at https://github.com/Plankson/awesome-explainable-reinforcement-learning.
translated by 谷歌翻译
从制造环境到个人房屋的最终用户任务的巨大多样性使得预编程机器人非常具有挑战性。事实上,教学机器人从划痕的新行动可以重复使用以前看不见的任务仍然是一个艰难的挑战,一般都留给了机器人专家。在这项工作中,我们展示了Iropro,这是一个交互式机器人编程框架,允许最终用户没有技术背景,以教授机器人新的可重用行动。我们通过演示和自动规划技术将编程结合起来,以允许用户通过通过动力学示范教授新的行动来构建机器人的知识库。这些行动是概括的,并重用任务计划程序来解决用户定义的先前未经调查的问题。我们将iropro作为Baxter研究机器人的端到端系统实施,同时通过演示通过示范来教授低级和高级操作,以便用户可以通过图形用户界面自定义以适应其特定用例。为了评估我们的方法的可行性,我们首先进行了预设计实验,以更好地了解用户采用所涉及的概念和所提出的机器人编程过程。我们将结果与设计后实验进行比较,在那里我们进行了用户学习,以验证我们对真实最终用户的方法的可用性。总体而言,我们展示了具有不同编程水平和教育背景的用户可以轻松学习和使用Iropro及其机器人编程过程。
translated by 谷歌翻译
深度加强学习(DEEPRL)方法已广泛用于机器人学,以了解环境,自主获取行为。深度互动强化学习(Deepirl)包括来自外部培训师或专家的互动反馈,提供建议,帮助学习者选择采取行动以加快学习过程。但是,目前的研究仅限于仅为特工现任提供可操作建议的互动。另外,在单个使用之后,代理丢弃该信息,该用途在为Revisit以相同状态引起重复过程。在本文中,我们提出了广泛的建议(BPA),这是一种广泛的持久的咨询方法,可以保留并重新使用加工信息。它不仅可以帮助培训师提供与类似状态相关的更一般性建议,而不是仅仅是当前状态,而且还允许代理加快学习过程。我们在两个连续机器人场景中测试提出的方法,即购物车极衡任务和模拟机器人导航任务。所得结果表明,使用BPA的代理的性能在于与深层方法相比保持培训师所需的相互作用的数量。
translated by 谷歌翻译
最先进的人工智能(AI)技术达到了令人印象深刻的复杂性。因此,研究人员正在发现越来越多的方法来在现实世界中使用它们。然而,这种系统的复杂性需要引入使那些对人类用户透明的方法。 AI社区正试图通过引入可解释的AI(XAI)字段来克服这个问题,这暂时使AI算法不那么不透明。但是,近年来,Xai更清楚地,Xai远远超过计算机科学问题:由于它是关于沟通,Xai也是一种人类代理互动问题。此外,AI从实验室中出来的实验室。这意味着需要对非专家用户量身定制的XAI解决方案。因此,我们向XAI提出了一个用户以用户为中心的框架,专注于其社会互动的方面,从认知和社会科学的理论和调查中获取灵感。该框架旨在为非专家用户提供互动XAI解决方案的结构。
translated by 谷歌翻译
机器学习的最新进展导致人们对可解释的AI(XAI)的兴趣越来越大,使人类能够深入了解机器学习模型的决策。尽管最近有这种兴趣,但XAI技术的实用性尚未在人机组合中得到特征。重要的是,XAI提供了增强团队情境意识(SA)和共享心理模型发展的希望,这是有效的人机团队的关键特征。快速开发这种心理模型在临时人机团队中尤其重要,因为代理商对他人的决策策略没有先验知识。在本文中,我们提出了两个新颖的人类受试者实验,以量化在人机组合场景中部署XAI技术的好处。首先,我们证明XAI技术可以支持SA($ P <0.05)$。其次,我们研究了通过协作AI政策抽象诱导的不同SA级别如何影响临时人机组合绩效。重要的是,我们发现XAI的好处不是普遍的,因为对人机团队的组成有很大的依赖。新手受益于XAI提供增加的SA($ P <0.05 $),但容易受到认知开销的影响($ P <0.05 $)。另一方面,专家性能随着基于XAI的支持($ p <0.05 $)而降低,这表明关注XAI的成本超过了从提供的其他信息中获得的收益以增强SA所获得的收益。我们的结果表明,研究人员必须通过仔细考虑人机团队组成以及XAI方法如何增强SA来故意在正确的情况下设计和部署正确的XAI技术。
translated by 谷歌翻译