对比学习一直吸引着学习无监督的句子嵌入。当前的最新无监督方法是无监督的SIMCSE(UNSUP-SIMCSE)。 Unsup-Simcse将辍学作为最小数据增强方法,并将相同的输入句子传递给预训练的变压器编码器(带有掉落的掉落)两次,以获取两个相应的嵌入式以构建正对。由于句子的长度信息通常会由于使用嵌入变压器中的位置嵌入而编码到句子嵌入中,因此Unsup-Simcse中的每个正对实际上包含相同的长度信息。因此,接受这些正面对训练的Unsup-Simcse可能是有偏见的,这往往会考虑到语义上相同长度或相似长度的句子更相似。通过统计观察,我们发现Unsup-Simcse确实存在这样的问题。为了减轻它,我们应用了一个简单的重复操作来修改输入句子,然后分别将输入句子及其修改后的对应物传递给预训练的变压器编码器,以获取阳性对。此外,我们从计算机视觉社区中汲取灵感,并引入动量对比度,从而扩大了负面对的数量,而没有其他计算。提出的两种修改分别应用于正和负对,并构建一种新的句子嵌入方法,称为增强的Unsup-Simcse(ESIMCSE)。我们在几个基准数据集W.R.T上评估了所提出的ESIMCSE,语义文本相似性(STS)任务。实验结果表明,ESIMCSE的表现优于最先进的undup-Simcse,而Bert基碱的平均长矛相关性为2.02%。
translated by 谷歌翻译
对比度学习已逐渐应用于学习高质量的无监督句子嵌入。据我们所知,在以前的无监督方法中,最新的最新方法是无监督的SIMCSE(Unsup-Simcse)。 Unsup-Simcse在训练阶段使用Infonce1Loss功能,通过将语义上相似的句子拉在一起并分开不相似。从理论上讲,我们希望在Unsup-Simcse中使用较大的批次,以在样本中进行更充分的比较并避免过度拟合。但是,增加批量的大小并不总是会导致改进,而是在批处理大小超过阈值时会导致性能降解。通过统计观察,我们发现这可能是由于在批量生产大小后引入了低信心负对。为了减轻这个问题,我们在Infonce损失函数上引入了一种简单的平滑策略,称为Gaussian平滑infonce(GS-Infonce)。特别是,我们将随机的高斯噪声向量添加为负样品,它们的负面样品空间的平滑性。简单,提出的平滑策略为Unsup-Simcse带来了重大改进。我们评估GS-INFONCEON标准语义文本相似性(STS)任务。 GS-Infonce的平均长矛人相关性优于最先进的Unsup-Simcse,在Bert-Base,Bert-Large,Roberta-Base的基础上,长矛人的相关性为1.38%,0.72%,1.17%和0.28%和罗伯塔·洛尔格(Roberta-Large)。
translated by 谷歌翻译
已经研究了对比学习,以提高学习句嵌入的表现。当前的最先进的方法是SIMCSE,它将丢失作为数据增强方法,并馈送预训练的变压器编码器两次相同的输入句。相应的输出,两个句子嵌入来自不同丢弃掩码的相同句子,可用于构建正对。使用丢弃掩模应用的网络可以被视为ITSEF的子网,其预期比例由差动率决定。在本文中,我们推动具有不同预期尺度的子网,了解相同句子的类似嵌入。 SIMCSE未能这样做,因为它们将丢失率修复到调谐的超参数。我们通过从分布蚀刻前进过程中采样辍学率来实现这一目标。由于这种方法可能使优化更加困难,我们还提出了一种简单的句子掩模策略来采样更多子网。我们在几个流行的语义文本相似性数据集中评估了所提出的S-SIMCSE。实验结果表明,S-SIMCSE优于最先进的SIMCSE超过$ 1 \%$ ON BERT $ _ {base} $
translated by 谷歌翻译
This paper presents SimCSE, a simple contrastive learning framework that greatly advances state-of-the-art sentence embeddings. We first describe an unsupervised approach, which takes an input sentence and predicts itself in a contrastive objective, with only standard dropout used as noise. This simple method works surprisingly well, performing on par with previous supervised counterparts. We find that dropout acts as minimal data augmentation, and removing it leads to a representation collapse. Then, we propose a supervised approach, which incorporates annotated pairs from natural language inference datasets into our contrastive learning framework by using "entailment" pairs as positives and "contradiction" pairs as hard negatives. We evaluate SimCSE on standard semantic textual similarity (STS) tasks, and our unsupervised and supervised models using BERT base achieve an average of 76.3% and 81.6% Spearman's correlation respectively, a 4.2% and 2.2% improvement compared to the previous best results. We also show-both theoretically and empirically-that the contrastive learning objective regularizes pre-trained embeddings' anisotropic space to be more uniform, and it better aligns positive pairs when supervised signals are available. 1 2 We randomly sample 10 6 sentences from English Wikipedia and fine-tune BERTbase with learning rate = 3e-5, N = 64. In all our experiments, no STS training sets are used.
translated by 谷歌翻译
Contrastive learning has become a new paradigm for unsupervised sentence embeddings. Previous studies focus on instance-wise contrastive learning, attempting to construct positive pairs with textual data augmentation. In this paper, we propose a novel Contrastive learning method with Prompt-derived Virtual semantic Prototypes (ConPVP). Specifically, with the help of prompts, we construct virtual semantic prototypes to each instance, and derive negative prototypes by using the negative form of the prompts. Using a prototypical contrastive loss, we enforce the anchor sentence embedding to be close to its corresponding semantic prototypes, and far apart from the negative prototypes as well as the prototypes of other sentences. Extensive experimental results on semantic textual similarity, transfer, and clustering tasks demonstrate the effectiveness of our proposed model compared to strong baselines. Code is available at https://github.com/lemon0830/promptCSE.
translated by 谷歌翻译
已经证明了对比学习适合学习句子嵌入,可以显着提高语义文本相似性(STS)任务。最近,大型对比学习模型,例如句子T5倾向于学到更强大的句子嵌入。虽然有效,但由于计算资源或时间成本限制,这种大型型号很难在线服务。为了解决这个问题,通常采用知识蒸馏(KD),这可以将大型“教师”模型压缩成一个小的“学生”模型,但通常会遭受一些性能损失。在这里,我们提出了一个增强的KD框架,称为蒸馏 - 对比度(迪斯科)。所提出的迪斯科框架首先利用KD将大句子嵌入模型的能力转移到大型未标记数据的小学生模型,然后在标记的训练数据上具有对比学习的学生模型。对于迪斯科舞厅的KD进程,我们进一步提出了对比的知识蒸馏(CKD),以增强教师模型培训,KD和学生模型的一致性,这可能会提高迅速学习的表现。 7 STS基准测试的广泛实验表明,使用所提出的迪斯科和CKD培训的学生模型很少或甚至没有性能损失,并且始终如一地优于相同参数大小的相应对应物。令人惊讶的是,我们的110米学生模型甚至可以优于最新的最新(SOTA)模型,即句子T5(11B),只有1%的参数。
translated by 谷歌翻译
以前的无监督句子嵌入研究集中在数据增强方法上,例如辍学和基于规则的句子转换方法。但是,这些方法限制了控制句子增强观点的细粒语义。这导致监督信号不足以捕获类似句子的语义相似性。在这项工作中,我们发现使用邻居句子可以捕获相似句子之间更准确的语义相似性。基于这一发现,我们提出了RankEncoder,该发现使用了输入句子和语料库中的句子之间的关系来训练无监督的句子编码器。我们从三个角度评估rankencoder:1)语义文本相似性性能,2)相似句子对的功效,以及3)rankencoder的普遍性。实验结果表明,与先前的最新性能相比,Rankencoder达到80.07 \%Spearman的相关性,绝​​对提高了1.1%。在类似的句子对上,改进更加显着,改善了1.73%。另外,我们证明了RankEncoder普遍适用于现有的无监督句子编码器。
translated by 谷歌翻译
虽然对比学习大大提升了句子嵌入的表示,但它仍然受到现有句子数据集的大小的限制。在本文中,我们向Transaug(转换为增强),它提供了利用翻译句子对作为文本的数据增强的第一次探索,并介绍了两级范例,以提高最先进的句子嵌入。我们不是采用以其他语言设置培训的编码器,我们首先从SIMCSE编码器(以英语预先预先预订)蒸发蒸馏出一个汉语编码器,以便它们的嵌入在语义空间中靠近,这可以被后悔作为隐式数据增强。然后,我们只通过交叉语言对比学习更新英语编码器并将蒸馏的中文编码器冷冻。我们的方法在标准语义文本相似度(STS)上实现了一种新的最先进的,表现出SIMCSE和句子T5,以及由Senteval评估的传输任务的相应轨道中的最佳性能。
translated by 谷歌翻译
无监督的句子嵌入学习最近由对比度学习方法(例如SIMCSE)主导,该方法保持积极对相似,并将负面对拆开。对比操作旨在通过在积极实例之间最大化相互信息来保持尽可能多的信息,从而导致句子嵌入中的冗余信息。为了解决这个问题,我们提出了一个基于信息最小化的对比度学习(Informin-CL)模型,以保留有用的信息并通过最大化相互信息并最大程度地减少无监督句子表示学习的正面实例之间的信息熵,从而丢弃冗余信息。具体而言,我们发现信息最小化可以通过简单的对比度和重建目标来实现。重建操作通过另一个正实例重构积极实例,以最大程度地减少正实例之间的信息熵。我们在下游任务中评估了我们的模型,包括受监督和无监督的(语义文本相似性)任务。广泛的实验结果表明,我们的Informin-CL获得了最先进的性能。
translated by 谷歌翻译
We present Relational Sentence Embedding (RSE), a new paradigm to further discover the potential of sentence embeddings. Prior work mainly models the similarity between sentences based on their embedding distance. Because of the complex semantic meanings conveyed, sentence pairs can have various relation types, including but not limited to entailment, paraphrasing, and question-answer. It poses challenges to existing embedding methods to capture such relational information. We handle the problem by learning associated relational embeddings. Specifically, a relation-wise translation operation is applied to the source sentence to infer the corresponding target sentence with a pre-trained Siamese-based encoder. The fine-grained relational similarity scores can be computed from learned embeddings. We benchmark our method on 19 datasets covering a wide range of tasks, including semantic textual similarity, transfer, and domain-specific tasks. Experimental results show that our method is effective and flexible in modeling sentence relations and outperforms a series of state-of-the-art sentence embedding methods. https://github.com/BinWang28/RSE
translated by 谷歌翻译
预训练的语言模型(PLM)在自然语言理解中的许多下游任务中取得了显着的性能增长。已提出了各种中文PLM,以学习更好的中文表示。但是,大多数当前模型都使用中文字符作为输入,并且无法编码中文单词中包含的语义信息。虽然最近的预训练模型同时融合了单词和字符,但它们通常会遭受不足的语义互动,并且无法捕获单词和字符之间的语义关系。为了解决上述问题,我们提出了一个简单而有效的PLM小扣手,该小扣子采用了对单词和性格表示的对比度学习。特别是,Clower通过对多透明信息的对比学习将粗粒的信息(即单词)隐式编码为细粒度表示(即字符)。在现实的情况下,小电动器具有很大的价值,因为它可以轻松地将其纳入任何现有的基于细粒的PLM中而无需修改生产管道。在一系列下游任务上进行的扩展实验表明,小动物的卓越性能超过了几个最先进的实验 - 艺术基线。
translated by 谷歌翻译
学习高质量的对话表示对于解决各种面向对话的任务至关重要,尤其是考虑到对话系统通常会遇到数据稀缺。在本文中,我们介绍了对话句子嵌入(DSE),这是一种自我监督的对比学习方法,它学习有效的对话表示,适合各种对话任务。 DSE通过连续进行与对比度学习的正面对话的连续对话来从对话中学习。尽管它很简单,但DSE的表现能力比其他对话表示和普遍的句子表示模型要好得多。我们评估DSE的五个下游对话任务,这些任务检查了不同语义粒度的对话表示。几次射击和零射击设置的实验表明,DSE的表现要优于基线。例如,它在6个数据集中的1-Shot意图分类中比最强的无监督基线实现了13%的平均绩效提高。我们还提供了有关模型的好处和局限性的分析。
translated by 谷歌翻译
在以前的作品中广泛讨论了句子语义相似性的原始伯特的表现不佳。我们发现不满意的性能主要是由于静态令牌嵌入偏差和无效的伯特层,而不是姓氏的高余弦相似性。为此,我们提出了一个迅速的句子嵌入方法,可以减少令牌嵌入偏差,使原始伯特层更有效。通过将句子嵌入式任务重新塑造为填充空白问题,我们的方法显着提高了原始伯特的性能。我们讨论了两个提示符,表示基于及时的句子嵌入的三个提示搜索方法。此外,我们提出了一种通过模板去噪技术的新型无监督培训目标,这大大缩短了监督和无人监督的环境之间的性能差距。对于实验,我们评估我们在非微调和微调的设置上的方法。即使是非微调方法也可以优于STS任务上的无监督服务器等微调的方法。我们的微调方法在无监督和监督设置中优于最先进的方法SIMCSE。与SIMCSE相比,我们分别在无监督环境下实现了2.29和2.58点的伯特和罗伯塔的改进。
translated by 谷歌翻译
在本文中,我们建议将不同语言的句子表示对齐到统一的嵌入空间,其中可以用简单的点产品计算语义相似之处(交叉语言和单晶)。预先接受的语言模型与翻译排名任务进行微调。现有工作(Feng等人,2020)使用与批量相同的句子作为否定,这可能会遭受易于否定的问题。我们适应MOCO(赫尔,2020)以进一步提高对准质量。作为实验结果表明,我们的模型产生的句子表示在包括Tatoeba en-Zh的许多任务中实现了新的最先进的,包括STATOEBA EN-ZH类似性搜索(Artetxe和Schwenk,2019b),Bucc en-Zh Bitext Mining,7个数据集上的语义文本相似性。
translated by 谷歌翻译
存在预训练模型在各种文本分类任务上取得了最先进的性能。这些模型已被证明可用于学习普遍语言表示。然而,通过先进的预训练模型无法有效地区分类似文本之间的语义差异,这对难以区分类的性能产生了很大的影响。为了解决这个问题,我们在这项工作中提出了一种与标签距离(CLLD)的新型对比学习。灵感来自最近对比学习的进步,我们专门设计了一种具有标签距离的分类方法,用于学习对比类。 CLLD可确保在导致不同标签分配的细微差别中的灵活性,并为同时具有相似性的每个类生成不同的表示。关于公共基准和内部数据集的广泛实验表明,我们的方法提高了预先训练模型在分类任务上的性能。重要的是,我们的实验表明,学习的标签距离减轻了细胞的对抗性质。
translated by 谷歌翻译
我们提供了从文本到文本变换器(T5)的第一次探索句子嵌入式。句子嵌入式广泛适用于语言处理任务。虽然T5在作为序列到序列映射问题的语言任务上实现令人印象深刻的性能,但目前尚不清楚如何从编码器解码器模型生成陈列嵌入的句子。我们调查三种方法提取T5句子嵌入方法:两个仅利用T5编码器,一个使用全T5编码器解码器模型。为了支持我们的调查,我们建立了一个新的句子代表转移基准,SentGlue,它将Senteval Toolkit扩展到粘合基准的九个任务。我们的编码器的型号优于Senteval和SentGlue传输任务的句子 - BERT和SIMCSE句子嵌入,包括语义文本相似性(STS)。发现从数百万到数十亿参数的缩放T5产生一致的进一步改进。最后,我们的编码器 - 解码器方法在使用句子嵌入时在STS上实现了新的最先进的。我们的模型在https://tfhub.dev/google/collections/sentence-t5/1发布。
translated by 谷歌翻译
最近的预训练的语言模型(PLM)通过学习语言特征和上下文化的句子表示,在许多自然语言处理任务上取得了巨大成功。由于未清楚地识别出在PLM的堆叠层中捕获的属性,因此通常首选嵌入最后一层的直接方法,而不是从PLM中得出句子表示。本文介绍了基于注意力的合并策略,该策略使该模型能够保留每一层中捕获的图层信号,并学习下游任务的消化语言特征。对比度学习目标可以使层面上的注意力汇集到无监督和监督的举止。它导致预先训练嵌入的各向异性空间并更均匀。我们评估我们的模型关于标准语义文本相似性(STS)和语义搜索任务。结果,我们的方法改善了基础对比度的BERT_BASE和变体的性能。
translated by 谷歌翻译
This paper presents miCSE, a mutual information-based Contrastive learning framework that significantly advances the state-of-the-art in few-shot sentence embedding. The proposed approach imposes alignment between the attention pattern of different views during contrastive learning. Learning sentence embeddings with miCSE entails enforcing the syntactic consistency across augmented views for every single sentence, making contrastive self-supervised learning more sample efficient. As a result, the proposed approach shows strong performance in the few-shot learning domain. While it achieves superior results compared to state-of-the-art methods on multiple benchmarks in few-shot learning, it is comparable in the full-shot scenario. The proposed approach is conceptually simple, easy to implement and optimize, yet empirically powerful. This study opens up avenues for efficient self-supervised learning methods that are more robust than current contrastive methods for sentence embedding.
translated by 谷歌翻译
在NLP中,句子的语义表示学习是一个重要且研究的问题。该任务的当前趋势涉及通过与文本的对比目标进行培训基于变压器的句子编码器,即具有语义上相似的含义并散布他人的聚类句子。在这项工作中,我们发现,通过使用另一种模式(例如,句子和不相关的图像/音频数据),使用多模式多任务损失的训练,可以通过多模式多任务损失进行训练来改进变压器模型的性能。特别是,除了通过文本的对比损失学习外,我们的模型簇还来自非语言域(例如,视觉/音频),同时具有相似的对比度损失。我们框架对未配对的非语言数据的依赖使IT语言不可思议,从而使其在英语NLP之外广泛适用。在7个语义文本相似性基准上进行的实验表明,经过其他非语言(图像/音频)对比目标训练的模型可导致更高质量的句子嵌入。这表明变压器模型能够通过执行类似的任务(即聚类),并以多任务方式的不同模式的示例来更好地概括。
translated by 谷歌翻译
对比的学习技术已广泛用于计算机视野中作为增强数据集的手段。在本文中,我们将这些对比学习嵌入的使用扩展到情绪分析任务,并证明了对这些嵌入的微调在基于BERT的嵌入物上的微调方面提供了改进,以在评估时实现更高的基准。在Dynasent DataSet上。我们还探讨了我们的微调模型在跨域基准数据集上执行的。此外,我们探索了ups采样技术,以实现更平衡的班级分发,以进一步改进我们的基准任务。
translated by 谷歌翻译