心房颤动(AF)是全球最普遍的心律失常,其中2%的人口受影响。它与增加的中风,心力衰竭和其他心脏相关并发症的风险有关。监测风险的个体和检测无症状AF可能导致相当大的公共卫生益处,因为无误的人可以采取预防措施的生活方式改变。随着可穿戴设备的增加,个性化的医疗保健将越来越多。这些个性化医疗保健解决方案需要准确地分类生物信号,同时计算廉价。通过推断设备,我们避免基于云和网络连接依赖性等基于云的系统固有的问题。我们提出了一种有效的管道,用于实时心房颤动检测,精度高精度,可在超边缘设备中部署。本研究中采用的特征工程旨在优化所拟议的管道中使用的资源有效的分类器,该分类器能够以每单纯折衷的内存足迹以10 ^ 5倍型号优惠。分类准确性2%。我们还获得了更高的准确性约为6%,同时消耗403 $ \ times $较小的内存,与以前的最先进的(SOA)嵌入式实现相比为5.2 $ \ times $。
translated by 谷歌翻译
新生儿癫痫发作是一种通常遇到的神经系统条件。它们是严重神经障碍的第一个临床迹象。因此,需要快速识别和治疗以防止严重的死亡。在神经学领域中使用脑电图(EEG)允许精确地诊断几种医疗条件。然而,解释EEG信号需要高度专业人员的注意,因为婴儿脑在新生儿期间发育不起。检测癫痫发作可能会妨碍对婴儿的神经认知发展的负面影响。近年来,使用机器学习算法的新生儿癫痫发作检测已经获得牵引力。由于需要在癫痫发作检测的情况下对生物信号进行计算廉价的生物信号,因此本研究提供了一种基于机器学习(ML)的架构,其与以前的模型相当的预测性能,但具有最小级别配置。拟议的分类器在赫尔辛基大学医院录制的尼古尔缉获量的公共数据数据上进行了培训和测试。我们的架构实现了87%的最佳敏感性,比本研究中选择的标准ML型号的6%增加了6%。 ML分类器的模型大小优化为仅为4.84 kB,最小预测时间为182.61毫秒,从而使其部署在可穿戴的超边设备上,以便快速准确,并避免基于云的需求和其他这种穷举计算方法。
translated by 谷歌翻译
可穿戴设备和医疗器互联网(IOMT)的最新发展允许实时监控和记录心电图(ECG)信号。然而,由于能量和内存约束,对ECG信号的连续监测在低功耗可穿戴设备中具有挑战性。因此,在本文中,我们提出了一种新颖和节能的方法,用于连续监测低功耗可穿戴设备的心脏。所提出的方法由三个不同的层组成:1)噪声/伪像检测层,以级别ECG信号的质量; 2)正常/异常拍摄分类层以检测心电图信号中的异常,3)异常搏动分类层以检测来自ECG信号的疾病。此外,分布式多输出卷积神经网络(CNN)架构用于降低边缘/云之间的能量消耗和等待时间。我们的方法论在众所周知的MIT-BIH心律失常数据集上达到了99.2%的准确性。 Real硬件的评估表明,我们的方法是适用于具有32KB最小RAM的设备。此外,与最先进的工作相比,所提出的方法可以获得7美元的能效。
translated by 谷歌翻译
心电图(ECG)是用于监测心脏电信号和评估其功能的最常见和常规诊断工具。人心脏可能患有多种疾病,包括心律不齐。心律不齐是一种不规则的心律,在严重的情况下会导致心脏中风,可以通过ECG记录诊断。由于早期发现心律不齐非常重要,因此在过去的几十年中,计算机化和自动化的分类以及这些异常心脏信号的识别引起了很多关注。方法:本文引入了一种轻度的深度学习方法,以高精度检测8种不同的心律不齐和正常节奏。为了利用深度学习方法,将重新采样和基线徘徊清除技术应用于ECG信号。在这项研究中,将500个样本ECG段用作模型输入。节奏分类是通过11层网络以端到端方式完成的,而无需手工制作的手动功能提取。结果:为了评估提出的技术,从两个Physionet数据库,MIT-BIH心律失常数据库和长期AF数据库中选择了ECG信号。基于卷积神经网络(CNN)和长期记忆(LSTM)的组合,提出的深度学习框架比大多数最先进的方法显示出令人鼓舞的结果。所提出的方法达到98.24%的平均诊断准确性。结论:成功开发和测试了使用多种心电图信号的心律失常分类的训练有素的模型。意义:由于本工作使用具有高诊断精度的光分类技术与其他值得注意的方法相比,因此可以在Holter Monitor设备中成功实施以进行心律失常检测。
translated by 谷歌翻译
本文的重点是概念证明,机器学习(ML)管道,该管道从低功率边缘设备上获取的压力传感器数据中提取心率。 ML管道包括一个UPS采样器神经网络,信号质量分类器以及优化的1D横向扭转神经网络,以高效且准确的心率估计。这些型号的设计使管道小于40 kb。此外,开发了由UPS采样器和分类器组成的杂种管道,然后开发了峰值检测算法。管道部署在ESP32边缘设备上,并针对信号处理进行基准测试,以确定能量使用和推理时间。结果表明,与传统算法相比,提出的ML和杂种管道将能量和时间减少82%和28%。 ML管道的主要权衡是准确性,平均绝对误差(MAE)为3.28,而混合动力车和信号处理管道为2.39和1.17。因此,ML模型显示出在能源和计算约束设备中部署的希望。此外,ML管道的较低采样率和计算要求可以使自定义硬件解决方案降低可穿戴设备的成本和能源需求。
translated by 谷歌翻译
对心电图(ECG)信号的调查是诊断心脏病的必要方式,因为ECG过程是非侵入性的,易于使用。这项工作介绍了由几个阶段组成的Supraventriculary的心律失常预测模型,包括噪声过滤,唯一的ECG特征集合,以及自动学习分类模型,以分类不同类型,具体取决于它们的严重程度。我们在执行提取之前,我们去趋势和解除噪声降低噪声以更好地确定功能的信号。之后,我们呈现一个R峰值检测方法和Q-S检测方法作为必要的特征提取的一部分。计算对应于这些功能的下一个参数。使用这些特征,我们已经开发了一种基于机器学习的分类模型,可以成功地分类不同类型的Supraventricular contcardia。我们的研究结果表明,基于决策树的模型是Supraventriculary心动过速心律失常最有效的机器学习模型。在所有机器学习模型中,该模型最有效地降低了Supranculary心动过速的关键信号错误分类。实验结果表明,令人满意的改进,并展示了提出的方法的优越效率,精度为97%。
translated by 谷歌翻译
心血管疾病是世界各地最常见的死亡原因。为了检测和治疗心脏相关的疾病,需要连续血压(BP)监测以及许多其他参数。为此目的开发了几种侵入性和非侵入性方法。用于持续监测BP的医院中使用的大多数现有方法是侵入性的。相反,基于袖带的BP监测方法,可以预测收缩压(SBP)和舒张压(DBP),不能用于连续监测。几项研究试图从非侵​​入性可收集信号(例如光学肌谱(PPG)和心电图(ECG))预测BP,其可用于连续监测。在这项研究中,我们探讨了自动化器在PPG和ECG信号中预测BP的适用性。在12,000岁的MIMIC-II数据集中进行了调查,发现了一个非常浅的一维AutoEncoder可以提取相关功能,以预测与最先进的SBP和DBP在非常大的数据集上的性能。从模拟-II数据集的一部分的独立测试分别为SBP和DBP提供了2.333和0.713的MAE。在40个主题的外部数据集上,模型在MIMIC-II数据集上培训,分别为SBP和DBP提供2.728和1.166的MAE。对于这种情况来说,结果达到了英国高血压协会(BHS)A级并超越了目前文学的研究。
translated by 谷歌翻译
睡眠呼吸暂停(SA)是一种睡眠障碍,其特征是打s和慢性睡眠,这可能导致严重的疾病,例如高血压,心力衰竭和心肌病(心脏肌肉组织的增大)。心电图(ECG)在识别SA中起着至关重要的作用,因为它可能显示出异常的心脏活性。对基于ECG的SA检测的最新研究集中在功能工程技术上,这些技术从多铅ECG信号中提取特定特征,并将其用作分类模型输入。在这项研究中,提出了一种基于S峰检测的新型特征提取方法,以增强使用单铅ECG对相邻SA段的检测。特别是,使用单个铅(V2)收集的ECG特征用于识别SA发作。在提取的功能上,对CNN模型进行了训练以检测SA。实验结果表明,所提出的方法从单铅ECG数据中检测到SA比现有的最新方法更准确,具有91.13%的分类精度,敏感性为92.58%和88.75%的特异性。此外,与S峰相关的特征的进一步使用可以提高分类准确性0.85%。我们的发现表明,提出的机器学习系统有可能成为检测SA发作的有效方法。
translated by 谷歌翻译
血压(BP)是心血管疾病和中风最有影响力的生物标志物之一;因此,需要定期监测以诊断和预防医疗并发症的任何出现。目前携带的携带BP监测的无齿状方法,虽然是非侵入性和不引人注目的,涉及围绕指尖光肌谱(PPG)信号的显式特征工程。为了规避这一点,我们提出了一种端到端的深度学习解决方案,BP-Net,它使用PPG波形来估计通过中间连续动脉BP来估计收缩压BP(SBP),平均压力(MAP)和舒张压BP(DBP) (ABP)波形。根据英国高血压协会(BHS)标准的条款,BP-Net为SBP估计实现了DBP和地图估计和B级的A级。 BP-Net还满足了医疗仪器(AAMI)标准的推进和地图估计,分别实现了5.16mmHg和2.89mmHg的平均误差(MAE),分别用于SBP和DBP。此外,我们通过在Raspberry PI 4设备上部署BP-Net来建立我们的方法的无处不在的潜力,并为我们的模型实现4.25毫秒的推理时间来将PPG波形转换为ABP波形。
translated by 谷歌翻译
在初步诊断和分析心脏缺陷,ECG信号发挥着重要作用。本文介绍了使用噪声滤波,独特的心电图特征和基于机器学习的分类器模型预测心室性心动过速心律失常的模型。在信号特征提取之前,我们可以拒绝并使信号脱落以消除正确检测特征的噪声。在提取必要的特征之后,测量与这些特征相关的必要参数。使用这些参数,我们使用的是一种高效的多键级分类器模型,使用机器学习方法可以有效地分类不同类型的心室性心动过速心律失常。我们的结果表明,基于逻辑回归和决策树的模型是用于检测心室性心动过速的最有效的机器学习模型。为了诊断心脏病并为患者寻找护理,需要早期,可靠的不同类型心律失常的诊断。通过实施我们提出的方法,这项工作涉及减少与心室性心动过速有关的关键信号的错误分类问题的问题。实验结果表明了我们提出的算法的令人满意的增强,并表现出高度的恢复力。通过这种帮助,医生可以提前评估这种患者的这种心律失常,并在适当的时间作出正确的决定。
translated by 谷歌翻译
背景:基于AI的足够大型,精心策划的医疗数据集的分析已被证明有望提供早期检测,更快的诊断,更好的决策和更有效的治疗方法。但是,从多种来源获得的如此高度机密且非常敏感的医疗数据通常受到高度限制,因为不当使用,不安全的存储,数据泄漏或滥用可能侵犯了一个人的隐私。在这项工作中,我们将联合学习范式应用于异质的,孤立的高清心电图集,该图从12铅的ECG传感器阵列到达来训练AI模型。与在中心位置收集相同的数据时,我们评估了所得模型的能力,与经过训练的最新模型相比,获得了等效性能。方法:我们提出了一种基于联合学习范式训练AI模型的隐私方法,以培训AI模型,以实现异质,分布式,数据集。该方法应用于基于梯度增强,卷积神经网络和具有长期短期记忆的复发神经网络的广泛机器学习技术。这些模型在一个心电图数据集上进行了培训,该数据集包含从六名地理分开和异质来源的43,059名患者收集的12个铅录音。研究结果:用于检测心血管异常的AI模型的结果集获得了与使用集中学习方法训练的模型相当的预测性能。解释:计算参数的方法在本地为全局模型做出了贡献,然后仅交换此类参数,而不是ML中的整个敏感数据,这有助于保留医疗数据隐私。
translated by 谷歌翻译
深神经网络(DNN)是医疗应用中有前途的工具。但是,由于通信的能源成本很高,因此在电池供电设备上实施复杂的DNN是具有挑战性的。在这项工作中,开发了卷积神经网络模型,用于检测心电图(ECG)信号的房颤。该模型表明,尽管接受了有限的可变长度输入数据训练,但表现出了高性能。重量修剪和对数定量合并以引入稀疏性并降低模型大小,可以利用这些稀疏性,以减少数据移动和降低计算复杂性。最终模型达到了91.1%的模型压缩率,同时保持高模型精度为91.7%,损失小于1%。
translated by 谷歌翻译
为了推动满足所有人需求并使医疗保健民主化的健康创新,有必要评估各种分配转变的深度学习(DL)算法的概括性能,以确保这些算法具有强大的态度。据我们所知,这项回顾性研究是第一个开发和评估从跨种族,年龄和性别的长期跳动间隔的AF事件检测的深度学习模型(DL)模型的概括性能(DL)模型的概括。新的复发DL模型(表示为ARNET2)是在2,147名患者的大型回顾性数据集中开发的,总计51,386小时连续心电图(ECG)。对来自四个中心(美国,以色列,日本和中国)的手动注释测试集评估了模型的概括,总计402名患者。该模型在以色列海法的Rambam医院Holter Clinic的1,730个Consecutives Holter记录中进一步验证了该模型。该模型的表现优于最先进的模型,并且在种族,年龄和性别之间进行了广泛的良好。女性的表现高于男性和年轻人(不到60岁),并且在种族之间显示出一些差异。解释这些变化的主要发现是心房颤动患病率更高(AFL)的群体的性能受损。我们关于跨组的ARNET2相对性能的发现可能对选择相对于感兴趣群的首选AF检查方法具有临床意义。
translated by 谷歌翻译
在过去的二十年中,癫痫发作检测和预测算法迅速发展。然而,尽管性能得到了重大改进,但它们使用常规技术(例如互补的金属氧化物 - 轴导剂(CMO))进行的硬件实施,在权力和面积受限的设置中仍然是一项艰巨的任务;特别是当使用许多录音频道时。在本文中,我们提出了一种新型的低延迟平行卷积神经网络(CNN)体系结构,与SOTA CNN体系结构相比,网络参数少2-2,800倍,并且达到5倍的交叉验证精度为99.84%,用于癫痫发作检测,检测到99.84%。癫痫发作预测的99.01%和97.54%分别使用波恩大学脑电图(EEG),CHB-MIT和SWEC-ETHZ癫痫发作数据集进行评估。随后,我们将网络实施到包含电阻随机存储器(RRAM)设备的模拟横梁阵列上,并通过模拟,布置和确定系统中CNN组件的硬件要求来提供全面的基准。据我们所知,我们是第一个平行于在单独的模拟横杆上执行卷积层内核的人,与SOTA混合Memristive-CMOS DL加速器相比,潜伏期降低了2个数量级。此外,我们研究了非理想性对系统的影响,并研究了量化意识培训(QAT),以减轻由于ADC/DAC分辨率较低而导致的性能降解。最后,我们提出了一种卡住的重量抵消方法,以减轻因卡住的Ron/Roff Memristor重量而导致的性能降解,而无需再进行重新培训而恢复了高达32%的精度。我们平台的CNN组件估计在22nm FDSOI CMOS流程中占据31.255mm $^2 $的面积约为2.791W。
translated by 谷歌翻译
呼吸率(RR)是重要的生物标志物,因为RR变化可以反映严重的医学事件,例如心脏病,肺部疾病和睡眠障碍。但是,不幸的是,标准手动RR计数容易出现人为错误,不能连续执行。这项研究提出了一种连续估计RR,RRWAVENET的方法。该方法是一种紧凑的端到端深度学习模型,不需要特征工程,可以将低成本的原始光摄影学(PPG)用作输入信号。对RRWAVENET进行了独立于主题的测试,并与三个数据集(BIDMC,Capnobase和Wesad)中的基线进行了比较,并使用三个窗口尺寸(16、32和64秒)进行了比较。 RRWAVENET优于最佳窗口大小为1.66 \ pm 1.01、1.59 \ pm 1.08的最佳绝对错误的最新方法,每个数据集每分钟每分钟呼吸0.96。在远程监视设置(例如在WESAD数据集中),我们将传输学习应用于其他两个ICU数据集,将MAE降低到1.52 \ pm每分钟0.50呼吸,显示此模型可以准确且实用的RR对负担得起的可穿戴设备进行准确估算。我们的研究表明,在远程医疗和家里,远程RR监测的可行性。
translated by 谷歌翻译
心电图(ECG)是一种简单的非侵入性措施,用于识别与心律失常相关的问题,例如称为心律失常的不规则心跳。尽管人工智能和机器学习被用于广泛的与医疗保健相关的应用程序和数据集中,但近年来已经提出了许多使用深度学习方法的心律失常分类器。但是,可以从中构建和评估机器学习模型的可用数据集的尺寸通常很小,并且缺乏通知的公共ECG数据集很明显。在本文中,我们提出了一个深入的转移学习框架,旨在在小型培训数据集上执行分类。提出的方法是根据AAMI EC57标准,用MIT-BIH心律失常数据集微调通用图像分类器RESNET-18。本文进一步研究了许多现有的深度学习模型,这些模型未能避免根据AAMI建议泄漏数据。我们比较不同的数据拆分方法如何影响模型性能。这项比较研究表明,在使用包括MIT-BIH心律失常数据集在内时,心律不齐分类的未来工作应遵循AAMI EC57标准。
translated by 谷歌翻译
心血管疾病(CVD)是全球死亡的第一大原因。尽管有越来越多的证据表明心房颤动(AF)与各种CVD有着密切的关联,但这种心律不齐通常是使用心电图(ECG)诊断的,这是一种无风险,无侵入性和具有成本效益的工具。在任何威胁生命的疾病/疾病发展之前,不断和远程监视受试者的心电图信息迅速诊断和及时对AF进行预处理的潜力。最终,可以降低CVD相关的死亡率。在此手稿中,展示了体现可穿戴心电图设备,移动应用程序和后端服务器的个性化医疗系统的设计和实施。该系统不断监视用户的心电图信息,以提供个性化的健康警告/反馈。用户能够通过该系统与他们的配对健康顾问进行远程诊断,干预措施等。已经评估了实施的可穿戴ECG设备,并显示出极好的一致性(CVRMS = 5.5%),可接受的一致性(CVRMS = CVRMS = CVRMS = 12.1%),可忽略不计的RR间隙错误(<1.4%)。为了提高可穿戴设备的电池寿命,提出了使用ECG信号的准周期特征来实现压缩的有损压缩模式。与公认的架构相比,它在压缩效率和失真方面优于其他模式,并在MIT-BIH数据库中以ECG信号的某个PRD或RMSE达到了至少2倍的Cr。为了在拟议系统中实现自动化AF诊断/筛查,开发了基于重新系统的AF检测器。对于2017年Physionet CINC挑战的ECG记录,该AF探测器获得了平均测试F1 = 85.10%和最佳测试F1 = 87.31%,表现优于最先进。
translated by 谷歌翻译
心脏死亡和心律不齐占全世界所有死亡的很大一部分。心电图(ECG)是用于心血管疾病的最广泛使用的筛查工具。传统上,ECG信号是手动分类的,需要经验和良好的技巧,同时又耗时且容易出错。因此,机器学习算法因其执行复杂数据分析的能力而被广泛采用。从ECG(主要是Q,r和s)中引入的特征广泛用于心律不齐。在这项工作中,我们证明了使用混合功能和三种不同模型的ECG分类的性能提高了,这是我们过去提出的1D卷积神经网络(CNN)模型的建立。这项工作中提出的基于RR间隔的模型的准确性为98.98%,这是对基线模型的改进。为了使模型免疫噪声,我们使用频率功能更新了模型,并在噪声的存在下实现了良好的持续性能,精度略低为98.69%。此外,开发了另一个结合频率特征和RR间隔功能的模型,在嘈杂的环境中,持续性能良好,高精度为99%。由于其高精度和噪声免疫力,结合了多个混合功能的拟议模型非常适合门诊可穿戴感应应用。
translated by 谷歌翻译
COVID-19大流行已经暴露了全球医疗服务的脆弱性,增加了开发新颖的工具来提供快速且具有成本效益的筛查和诊断的需求。临床报告表明,Covid-19感染可能导致心脏损伤,心电图(ECG)可以作为Covid-19的诊断生物标志物。这项研究旨在利用ECG信号自动检测COVID-19。我们提出了一种从ECG纸记录中提取ECG信号的新方法,然后将其送入一维卷积神经网络(1D-CNN)中,以学习和诊断疾病。为了评估数字信号的质量,标记了基于纸张的ECG图像中的R峰。之后,将从每个图像计算的RR间隔与相应数字化信号的RR间隔进行比较。 COVID-19 ECG图像数据集上的实验表明,提出的数字化方法能够正确捕获原始信号,平均绝对误差为28.11 ms。我们提出的1D-CNN模型在数字化的心电图信号上进行了训练,允许准确识别患有COVID-19和其他受试者的个体,分类精度为98.42%,95.63%和98.50%,用于分类COVID-19 vs.正常,与正常人分类, COVID-19与异常心跳和Covid-19和其他类别分别与其他阶级。此外,提出的方法还为多分类任务实现了高级的性能。我们的发现表明,经过数字化的心电图信号训练的深度学习系统可以作为诊断Covid-19的潜在工具。
translated by 谷歌翻译
在过去的几年中,自动睡眠评分的研究主要集中在开发日益复杂的深度学习体系结构上。但是,最近,这些方法仅实现了边际改进,通常以需要更多数据和更昂贵的培训程序为代价。尽管所有这些努力及其令人满意的表现,但在临床背景下,自动睡眠期临时解决方案并未被广泛采用。我们认为,由于很难训练,部署和繁殖,大多数对睡眠评分的深度学习解决方案在现实世界中的适用性受到限制。此外,这些解决方案缺乏可解释性和透明度,这通常是提高采用率的关键。在这项工作中,我们使用经典的机器学习来重新审视睡眠阶段分类的问题。结果表明,通过传统的机器学习管道可以实现最新的性能,该管道包括预处理,功能提取和简单的机器学习模型。特别是,我们分析了线性模型和非线性(梯度提升)模型的性能。我们的方法超过了两个公共数据集上的最新方法(使用相同的数据):Sleep--EDF SC-20(MF1 0.810)和Sleep-eDF ST(MF1 0.795),同时在Sleep-eDF上取得了竞争成果SC-78(MF1 0.775)和质量SS3(MF1 0.817)。我们表明,对于睡眠阶段评分任务,工程特征向量的表现力与深度学习模型的内部学表现相当。该观察结果为临床采用打开了大门,因为代表性功能向量允许利用传统机器学习模型的可解释性和成功记录。
translated by 谷歌翻译