视觉信号压缩是一个长期存在的问题。通过深度学习的最近进步,令人兴奋的进展已经推动。尽管压缩性能更好,但现有的端到端压缩算法仍然以速率失真优化而设计更好的信号质量。在本文中,我们表明,网络架构的设计和优化可以进一步改善压缩机器视觉。我们为机器视觉的端到端压缩的编码器提出了一种反转的瓶颈结构,这特别考虑了语义信息的有效表示。此外,我们通过将分析精度纳入优化过程来追求优化的能力,并且通过以迭代方式进一步探索具有广义速率准确优化的最优性。我们使用对象检测作为展示用于机器视觉的端到端压缩,并且广泛的实验表明,该方案在分析性能方面实现了显着的BD速率。此外,由于信号电平重建,还对其他机器视觉任务的强大泛化能力表明了该方案的承诺。
translated by 谷歌翻译
视频编码技术已不断改进,以更高的分辨率以更高的压缩比。但是,最先进的视频编码标准(例如H.265/HEVC和多功能视频编码)仍在设计中,该假设将被人类观看。随着深度神经网络在解决计算机视觉任务方面的巨大进步和成熟,越来越多的视频通过无人参与的深度神经网络直接分析。当计算机视觉应用程序使用压缩视频时,这种传统的视频编码标准设计并不是最佳的。尽管人类视觉系统对具有高对比度的内容一直敏感,但像素对计算机视觉算法的影响是由特定的计算机视觉任务驱动的。在本文中,我们探索并总结了计算机视觉任务的视频编码和新兴视频编码标准,机器的视频编码。
translated by 谷歌翻译
随着事物(AIOT)的发展,在我们的日常工作和生活中产生了大量的视觉数据,例如图像和视频。这些视觉数据不仅用于人类观察或理解,而且用于机器分析或决策,例如智能监控,自动化车辆和许多其他智能城市应用。为此,在这项工作中提出了一种用于人机和机器使用的新图像编解码器范例。首先,利用神经网络提取高级实例分割图和低级信号特征。然后,实例分割图还被表示为具有所提出的16位灰度表示的简档。之后,两个16位灰度曲线和信号特征都以无损编解码器编码。同时,设计和培训图像预测器以实现具有16位灰度曲线简曲和信号特征的一般质量图像重建。最后,使用用于高质量图像重建的有损编解码器来压缩原始图像和预测的剩余地图。通过这种设计,一方面,我们可以实现可扩展的图像压缩,以满足不同人类消费的要求;另一方面,我们可以通过解码的16位灰度分布配置,例如对象分类,检测和分割,直接在解码器侧直接实现多个机器视觉任务。实验结果表明,该建议的编解码器在PSNR和MS-SSIM方面实现了基于大多数基于学习的编解码器,并且优于传统编解码器(例如,BPG和JPEG2000)以进行图像重建。同时,它在对象检测和分割的映射方面优于现有的编解码器。
translated by 谷歌翻译
最近,越来越多的图像被压缩并发送到用于机器分析任务的后端设备〜(\ textIt {e.g。,}对象检测),而不是纯粹由人类观察。但是,大多数传统图像编解码器旨在最大程度地减少人类视觉系统的失真,而无需考虑机器视觉系统的需求增加。在这项工作中,我们为机器视觉任务提出了一种预处理增强的图像压缩方法,以应对这一挑战。我们的框架不是依靠学习的图像编解码器进行端到端优化,而是基于传统的非差异编解码器,这意味着它是标准兼容的,并且可以轻松地部署在实际应用中。具体而言,我们在编码器之前提出了一个神经预处理模块,以维护下游任务的有用语义信息,并抑制无关信息以节省比特率。此外,我们的神经预处理模块是量化自适应的,可用于不同的压缩比。更重要的是,要通过下游机器视觉任务共同优化预处理模块,我们在后传播阶段介绍了传统非差异编解码器的代理网络。我们通过评估具有不同骨干网络的两个代表性下游任务的压缩方法来提供广泛的实验。实验结果表明,我们的方法通过节省约20%的比特率来实现编码比特率和下游机器视觉任务的性能之间的更好权衡。
translated by 谷歌翻译
机器的图像编码(ICM)旨在压缩图像进行AI任务分析,而不是满足人类的看法。学习一种既是一般(用于AI任务)的特征,也是紧凑的(用于压缩)的功能,这对于其成功而言至关重要。在本文中,我们试图通过学习通用功能,同时考虑压缩来开发ICM框架。我们将诸如无所不能功能和相应框架的功能命名为Omni-ICM。考虑到自我监督学习(SSL)提高了特征的概括,我们将其与压缩任务集成到OMNI-ICM框架中,以学习无所不能的功能。但是,在SSL中协调语义建模并在压缩中删除冗余是不平凡的,因此我们通过合作实例区分和熵最小化以自适应掉落的信息来设计新颖的信息过滤(如果)模块,以较弱相关的信息执行AI任务(例如,某些纹理冗余)。与以前的特定解决方案不同,Omni-ICM可以直接基于学习的无能功能的AI任务分析,而无需联合培训或额外的转换。尽管简单而直观,但Omni-ICM在多个基本愿景任务上大大优于现有的传统和基于学习的编解码器。
translated by 谷歌翻译
上下文自适应熵模型的应用显着提高了速率 - 渗透率(R-D)的性能,在该表现中,超级培训和自回归模型被共同利用来有效捕获潜在表示的空间冗余。但是,潜在表示仍然包含一些空间相关性。此外,这些基于上下文自适应熵模型的方法在解码过程中无法通过并行计算设备,例如FPGA或GPU。为了减轻这些局限性,我们提出了一个学识渊博的多分辨率图像压缩框架,该框架利用了最近开发的八度卷积,以将潜在表示形式分配到高分辨率(HR)和低分辨率(LR)部分,类似于小波变换,这进一步改善了R-D性能。为了加快解码的速度,我们的方案不使用上下文自适应熵模型。取而代之的是,我们利用一个额外的超层,包括超级编码器和超级解码器,以进一步删除潜在表示的空间冗余。此外,将跨分辨率参数估计(CRPE)引入提出的框架中,以增强信息流并进一步改善速率延伸性能。提出了对总损耗函数提出的其他信息损失,以调整LR部分对最终位流的贡献。实验结果表明,与最先进的学术图像压缩方法相比,我们的方法分别将解码时间减少了约73.35%和93.44%,R-D性能仍然优于H.266/VVC(4:4::4:: 2:0)以及对PSNR和MS-SSIM指标的一些基于学习的方法。
translated by 谷歌翻译
迄今为止,通信系统主要旨在可靠地交流位序列。这种方法提供了有效的工程设计,这些设计对消息的含义或消息交换所旨在实现的目标不可知。但是,下一代系统可以通过将消息语义和沟通目标折叠到其设计中来丰富。此外,可以使这些系统了解进行交流交流的环境,从而为新颖的设计见解提供途径。本教程总结了迄今为止的努力,从早期改编,语义意识和以任务为导向的通信开始,涵盖了基础,算法和潜在的实现。重点是利用信息理论提供基础的方法,以及学习在语义和任务感知通信中的重要作用。
translated by 谷歌翻译
语义通信引起了人们的兴趣,因为它可以显着减少在不丢失关键信息的情况下要传输的数据量。大多数现有作品都探索文本的语义编码和传输,并在自然语言处理(NLP)中应用技术来解释文本的含义。在本文中,我们构想了图像数据的语义通信,这些语义数据在语义和带宽敏感方面更为丰富。我们提出了一种基于增强学习的自适应语义编码(RL-ASC)方法,该方法编码超过像素级别的图像。首先,我们定义了图像数据的语义概念,该概念包括类别,空间布置和视觉特征作为表示单元,并提出卷积语义编码器以提取语义概念。其次,我们提出了图像重建标准,该标准从传统像素的相似性演变为语义相似性和感知性能。第三,我们设计了一种基于RL的新型语义位分配模型,其奖励是用自适应量化水平编码某个语义概念后的速率语义感知性能的提高。因此,与任务相关的信息得到正确保存和重建,同时丢弃了较少重要的数据。最后,我们提出了基于生成的对抗网(GAN)的语义解码器,该语义解码器通过注意模块融合本地和全球特征。实验结果表明,所提出的RL-ASC具有噪声稳定性,可以重建视觉上令人愉悦和语义一致的图像,并节省与标准编解码器和其他基于深度学习的图像编解码器相比,可以节省位置的时间。
translated by 谷歌翻译
最近的工作表明,学习的图像压缩策略可以倾销标准的手工制作压缩算法,这些压缩算法已经开发了几十年的速率 - 失真折衷的研究。随着计算机视觉的不断增长的应用,来自可压缩表示的高质量图像重建通常是次要目标。压缩,可确保计算机视觉任务等高精度,例如图像分割,分类和检测,因此具有跨各种设置的显着影响的可能性。在这项工作中,我们开发了一个框架,它产生适合人类感知和机器感知的压缩格式。我们表明可以了解到表示,同时优化核心视觉任务的压缩和性能。我们的方法允许直接从压缩表示培训模型,并且这种方法会产生新任务和低拍学习设置的性能。我们呈现出与标准高质量JPG相比细分和检测性能提高的结果,但是在每像素的比特方面,表示表示的表示性比率为4至10倍。此外,与天真的压缩方法不同,在比标准JEPG的十倍小的级别,我们格式培训的分段和检测模型仅在性能下遭受轻微的降级。
translated by 谷歌翻译
为了提高图像压缩性能,最近的基于神经网络的基于神经网络的研究可以分为三类:学习编解码器,后处理网络和紧凑型表示网络。学习编解码器专为超出传统压缩模块而设计的端到端学习。后处理网络使用基于示例的学习增加解码图像的质量。学习紧凑的表示网络,以降低输入图像的容量,以减少比特率的同时保持解码图像的质量。然而,这些方法与现有的编解码器不兼容,或者不会最佳地增加编码效率。具体地,由于编解码器的不准确性,难以在先前的研究中实现最佳学习。在本文中,我们提出了一种基于辅助编解码器网络(ACN)的新颖的标准兼容图像压缩框架。 ACNS旨在模仿现有编解码器的图像劣化操作,这为紧凑型表示网络提供了更准确的梯度。因此,可以有效地和最佳地学习紧凑的表示和后处理网络。我们证明,我们基于JPEG和高效视频编码(HEVC)标准的建议框架基本上以标准的兼容方式大致优于现有的图像压缩算法。
translated by 谷歌翻译
Along with the springing up of semantics-empowered communication (SemCom) researches, it is now witnessing an unprecedentedly growing interest towards a wide range of aspects (e.g., theories, applications, metrics and implementations) in both academia and industry. In this work, we primarily aim to provide a comprehensive survey on both the background and research taxonomy, as well as a detailed technical tutorial. Specifically, we start by reviewing the literature and answering the "what" and "why" questions in semantic transmissions. Afterwards, we present corresponding ecosystems, including theories, metrics, datasets and toolkits, on top of which the taxonomy for research directions is presented. Furthermore, we propose to categorize the critical enabling techniques by explicit and implicit reasoning-based methods, and elaborate on how they evolve and contribute to modern content \& channel semantics-empowered communications. Besides reviewing and summarizing the latest efforts in SemCom, we discuss the relations with other communication levels (e.g., reliable and goal-oriented communications) from a holistic and unified viewpoint. Subsequently, in order to facilitate the future developments and industrial applications, we also highlight advanced practical techniques for boosting semantic accuracy, robustness, and large-scale scalability, just to mention a few. Finally, we discuss the technical challenges that shed light on future research opportunities.
translated by 谷歌翻译
最近,基于深度学习的图像压缩已取得了显着的进步,并且在主观度量和更具挑战性的客观指标中,与最新的传统方法H.266/vvc相比,取得了更好的评分(R-D)性能。但是,一个主要问题是,许多领先的学识渊博的方案无法保持绩效和复杂性之间的良好权衡。在本文中,我们提出了一个效率和有效的图像编码框架,该框架的复杂性比最高的状态具有相似的R-D性能。首先,我们开发了改进的多尺度残差块(MSRB),该块可以扩展容纳长石,并且更容易获得全球信息。它可以进一步捕获和减少潜在表示的空间相关性。其次,引入了更高级的重要性图网络,以自适应地分配位置到图像的不同区域。第三,我们应用2D定量后flter(PQF)来减少视频编码中样本自适应偏移量(SAO)flter的动机。此外,我们认为编码器和解码器的复杂性对图像压缩性能有不同的影响。基于这一观察结果,我们设计了一个不对称范式,其中编码器采用三个阶段的MSRB来提高学习能力,而解码器只需要一个srb的一个阶段就可以产生令人满意的重建,从而在不牺牲性能的情况下降低了解码的复杂性。实验结果表明,与最先进的方法相比,所提出方法的编码和解码时间速度约为17倍,而R-D性能仅在Kodak和Tecnick数据集中降低了1%,而R-D性能仅少于1%。它仍然比H.266/VVC(4:4:4)和其他基于学习的方法更好。我们的源代码可在https://github.com/fengyurenpingsheng上公开获得。
translated by 谷歌翻译
在近期深度图像压缩神经网络中,熵模型在估计深度图像编码的先前分配时起着重要作用。现有方法将HydupRior与熵估计功能中的本地上下文组合。由于没有全球愿景,这大大限制了他们的表现。在这项工作中,我们提出了一种新的全局参考模型,用于图像压缩,以有效地利用本地和全局上下文信息,导致增强的压缩率。所提出的方法扫描解码的潜伏,然后找到最相关的潜伏,以帮助分布估计当前潜伏。这项工作的副产品是一种平均转换GDN模块的创新,进一步提高了性能。实验结果表明,所提出的模型优于行业中大多数最先进方法的速率变形性能。
translated by 谷歌翻译
可扩展的编码,可以适应通道带宽变化,在当今复杂的网络环境中表现良好。然而,现有的可扩展压缩方法面临两个挑战:降低压缩性能和可扩展性不足。在本文中,我们提出了第一所学习的细粒度可扩展图像压缩模型(DeepFGS)来克服上述两个缺点。具体地,我们介绍一个特征分离骨干,将图像信息划分为基本和可伸缩的功能,然后通过信息重新排列策略通过通道重新分配特征通道。以这种方式,我们可以通过一次通过编码来生成连续可扩展的比特流。此外,我们重复使用解码器以降低DeepFGS的参数和计算复杂性。实验表明,我们的DeePFGS优于PSNR和MS-SSIM度量中的所有基于学习的可伸缩图像压缩模型和传统可伸缩图像编解码器。据我们所知,我们的DeePFGS是对学习的细粒度可扩展编码的首次探索,与基于学习的方法相比,实现了最优质的可扩展性。
translated by 谷歌翻译
In recent years, neural image compression (NIC) algorithms have shown powerful coding performance. However, most of them are not adaptive to the image content. Although several content adaptive methods have been proposed by updating the encoder-side components, the adaptability of both latents and the decoder is not well exploited. In this work, we propose a new NIC framework that improves the content adaptability on both latents and the decoder. Specifically, to remove redundancy in the latents, our content adaptive channel dropping (CACD) method automatically selects the optimal quality levels for the latents spatially and drops the redundant channels. Additionally, we propose the content adaptive feature transformation (CAFT) method to improve decoder-side content adaptability by extracting the characteristic information of the image content, which is then used to transform the features in the decoder side. Experimental results demonstrate that our proposed methods with the encoder-side updating algorithm achieve the state-of-the-art performance.
translated by 谷歌翻译
学习的视频压缩最近成为开发高级视频压缩技术的重要研究主题,其中运动补偿被认为是最具挑战性的问题之一。在本文中,我们通过异质变形补偿策略(HDCVC)提出了一个学识渊博的视频压缩框架,以解决由单尺度可变形的特征域中单尺可变形核引起的不稳定压缩性能的问题。更具体地说,所提出的算法提取物从两个相邻框架中提取的算法提取物特征来估算估计内容自适应的异质变形(Hetdeform)内核偏移量,而不是利用光流或单尺内核变形对齐。然后,我们将参考特征转换为HetDeform卷积以完成运动补偿。此外,我们设计了一个空间 - 邻化的分裂归一化(SNCDN),以实现更有效的数据高斯化结合了广义分裂的归一化。此外,我们提出了一个多框架增强的重建模块,用于利用上下文和时间信息以提高质量。实验结果表明,HDCVC比最近最新学习的视频压缩方法取得了优越的性能。
translated by 谷歌翻译
需要高质量的面部图像来保证在监视和安全场景中自动识别系统(FR)系统的稳定性和可靠性。但是,由于传输或存储的限制,在分析之前,通常会压缩大量的面部数据。压缩图像可能会失去强大的身份信息,从而导致FR系统的性能降低。在此,我们首次尝试研究FR系统的明显差异(JND),可以将其定义为FR系统无法注意到的最大失真。更具体地说,我们建立了一个JND数据集,其中包括3530个原始图像和137,670个由高级参考编码/解码软件生成的压缩图像,该图像基于多功能视频编码(VVC)标准(VTM-15.0)。随后,我们开发了一种新型的JND预测模型,以直接推断FR系统的JND图像。特别是,为了最大程度地删除冗余性,在不损害鲁棒身份信息的情况下,我们将编码器应用于多个功能提取和基于注意力的特征分解模块,以将面部特征逐渐分解为两个不相关的组件,即身份和残差特征,通过自我 - 监督学习。然后,剩余特征被馈入解码器以生成残差图。最后,通过从原始图像中减去残差图来获得预测的JND映射。实验结果表明,与最先进的JND模型相比,所提出的模型可以实现JND MAP预测的更高准确性,并且能够在维持FR系统的性能的同时保存更多的位置,而与VTM-15.0相比。
translated by 谷歌翻译
Conventional video compression approaches use the predictive coding architecture and encode the corresponding motion information and residual information. In this paper, taking advantage of both classical architecture in the conventional video compression method and the powerful nonlinear representation ability of neural networks, we propose the first end-to-end video compression deep model that jointly optimizes all the components for video compression. Specifically, learning based optical flow estimation is utilized to obtain the motion information and reconstruct the current frames. Then we employ two auto-encoder style neural networks to compress the corresponding motion and residual information. All the modules are jointly learned through a single loss function, in which they collaborate with each other by considering the trade-off between reducing the number of compression bits and improving quality of the decoded video. Experimental results show that the proposed approach can outperform the widely used video coding standard H.264 in terms of PSNR and be even on par with the latest standard H.265 in terms of MS-SSIM. Code is released at https://github.com/GuoLusjtu/DVC. * Corresponding author (a) Original frame (Bpp/MS-SSIM) (b) H.264 (0.0540Bpp/0.945) (c) H.265 (0.082Bpp/0.960) (d) Ours ( 0.0529Bpp/ 0.961
translated by 谷歌翻译
当涉及数码相机中的图像压缩时,传统上是在压缩之前执行的。但是,在某些应用中,可能需要进行图像噪声来证明图像的可信度,例如法院证据和图像取证。这意味着除干净的图像本身外,还需要编码噪声本身。在本文中,我们提出了一个基于学习的图像压缩框架,在该框架中共同执行图像denoising和压缩。图像编解码器的潜在空间以可扩展的方式组织,以便可以从潜在空间的子集(基础层)中解码清洁图像,而嘈杂的图像则以较高的速率从完整的潜在空间解码。使用潜在空间的子集作为剥落图像,可以以较低的速率进行deno。除了提供嘈杂的输入图像的可扩展表示外,用压缩共同执行deno,这是直观的意义,因为噪声很难压缩;因此,可压缩性是可能有助于区分信号的标准之一。将提出的编解码器与已建立的压缩和降解基准进行了比较,并且与最先进的编解码器和最先进的Denoiser的级联组合相比,实验显示了大量的比特率节省。
translated by 谷歌翻译
作为Shannon Paradigm的突破的语义通信旨在成功传输由源传送的语义信息,而不是每种单个符号或位的准确接收,而不管其含义如何。本文提供了关于语义通信的概述。在简要审查Shannon信息理论之后,我们讨论了深入学习的理论,框架和系统设计的语义通信。不同于用于测量传统通信系统的符号/误码率,还讨论了语义通信的新性能度量。这篇文章由几个开放问题结束。
translated by 谷歌翻译