最近的工作表明,学习的图像压缩策略可以倾销标准的手工制作压缩算法,这些压缩算法已经开发了几十年的速率 - 失真折衷的研究。随着计算机视觉的不断增长的应用,来自可压缩表示的高质量图像重建通常是次要目标。压缩,可确保计算机视觉任务等高精度,例如图像分割,分类和检测,因此具有跨各种设置的显着影响的可能性。在这项工作中,我们开发了一个框架,它产生适合人类感知和机器感知的压缩格式。我们表明可以了解到表示,同时优化核心视觉任务的压缩和性能。我们的方法允许直接从压缩表示培训模型,并且这种方法会产生新任务和低拍学习设置的性能。我们呈现出与标准高质量JPG相比细分和检测性能提高的结果,但是在每像素的比特方面,表示表示的表示性比率为4至10倍。此外,与天真的压缩方法不同,在比标准JEPG的十倍小的级别,我们格式培训的分段和检测模型仅在性能下遭受轻微的降级。
translated by 谷歌翻译
机器的图像编码(ICM)旨在压缩图像进行AI任务分析,而不是满足人类的看法。学习一种既是一般(用于AI任务)的特征,也是紧凑的(用于压缩)的功能,这对于其成功而言至关重要。在本文中,我们试图通过学习通用功能,同时考虑压缩来开发ICM框架。我们将诸如无所不能功能和相应框架的功能命名为Omni-ICM。考虑到自我监督学习(SSL)提高了特征的概括,我们将其与压缩任务集成到OMNI-ICM框架中,以学习无所不能的功能。但是,在SSL中协调语义建模并在压缩中删除冗余是不平凡的,因此我们通过合作实例区分和熵最小化以自适应掉落的信息来设计新颖的信息过滤(如果)模块,以较弱相关的信息执行AI任务(例如,某些纹理冗余)。与以前的特定解决方案不同,Omni-ICM可以直接基于学习的无能功能的AI任务分析,而无需联合培训或额外的转换。尽管简单而直观,但Omni-ICM在多个基本愿景任务上大大优于现有的传统和基于学习的编解码器。
translated by 谷歌翻译
最近的工作表明,变异自动编码器(VAE)与速率失真理论之间有着密切的理论联系。由此激发,我们从生成建模的角度考虑了有损图像压缩的问题。从最初是为数据(图像)分布建模设计的Resnet VAE开始,我们使用量化意识的后验和先验重新设计其潜在变量模型,从而实现易于量化和熵编码的图像压缩。除了改进的神经网络块外,我们还提出了一类强大而有效的有损图像编码器类别,超过了自然图像(有损)压缩的先前方法。我们的模型以粗略的方式压缩图像,并支持并行编码和解码,从而在GPU上快速执行。
translated by 谷歌翻译
我们提出了一种用于在仅在解码器处作为侧面信息可用时压缩图像的新型神经网络(DNN)架构。该问题在信息理论中称为分布式源编码(DSC)。特别地,我们考虑一对立体图像,其由于视野的重叠场而通常彼此具有高相关,并且假设要压缩和发送该对的一个图像,而另一个图像仅在解码器。在所提出的架构中,编码器将输入图像映射到潜像,量化潜在表示,并使用熵编码压缩它。训练解码器以仅使用后者使用后者提取输入图像和相关图像之间的公共信息。接收的潜在表示和本地生成的公共信息通过解码器网络来获得增强的输入图像的增强重建。公共信息提供了ReceIver上相关信息的简洁表示。我们训练并展示所提出的方法对立体声图像对的拟议方法的有效性。我们的结果表明,该建筑的架构能够利用仅解码器的侧面信息,并且在使用解码器侧信息的情况下优于立体图像压缩的先前工作。
translated by 谷歌翻译
Recent models for learned image compression are based on autoencoders, learning approximately invertible mappings from pixels to a quantized latent representation. These are combined with an entropy model, a prior on the latent representation that can be used with standard arithmetic coding algorithms to yield a compressed bitstream. Recently, hierarchical entropy models have been introduced as a way to exploit more structure in the latents than simple fully factorized priors, improving compression performance while maintaining end-to-end optimization. Inspired by the success of autoregressive priors in probabilistic generative models, we examine autoregressive, hierarchical, as well as combined priors as alternatives, weighing their costs and benefits in the context of image compression. While it is well known that autoregressive models come with a significant computational penalty, we find that in terms of compression performance, autoregressive and hierarchical priors are complementary and, together, exploit the probabilistic structure in the latents better than all previous learned models. The combined model yields state-of-the-art rate-distortion performance, providing a 15.8% average reduction in file size over the previous state-of-the-art method based on deep learning, which corresponds to a 59.8% size reduction over JPEG, more than 35% reduction compared to WebP and JPEG2000, and bitstreams 8.4% smaller than BPG, the current state-of-the-art image codec. To the best of our knowledge, our model is the first learning-based method to outperform BPG on both PSNR and MS-SSIM distortion metrics.32nd Conference on Neural Information Processing Systems (NIPS 2018),
translated by 谷歌翻译
Recent neural compression methods have been based on the popular hyperprior framework. It relies on Scalar Quantization and offers a very strong compression performance. This contrasts from recent advances in image generation and representation learning, where Vector Quantization is more commonly employed. In this work, we attempt to bring these lines of research closer by revisiting vector quantization for image compression. We build upon the VQ-VAE framework and introduce several modifications. First, we replace the vanilla vector quantizer by a product quantizer. This intermediate solution between vector and scalar quantization allows for a much wider set of rate-distortion points: It implicitly defines high-quality quantizers that would otherwise require intractably large codebooks. Second, inspired by the success of Masked Image Modeling (MIM) in the context of self-supervised learning and generative image models, we propose a novel conditional entropy model which improves entropy coding by modelling the co-dependencies of the quantized latent codes. The resulting PQ-MIM model is surprisingly effective: its compression performance on par with recent hyperprior methods. It also outperforms HiFiC in terms of FID and KID metrics when optimized with perceptual losses (e.g. adversarial). Finally, since PQ-MIM is compatible with image generation frameworks, we show qualitatively that it can operate under a hybrid mode between compression and generation, with no further training or finetuning. As a result, we explore the extreme compression regime where an image is compressed into 200 bytes, i.e., less than a tweet.
translated by 谷歌翻译
最近,越来越多的图像被压缩并发送到用于机器分析任务的后端设备〜(\ textIt {e.g。,}对象检测),而不是纯粹由人类观察。但是,大多数传统图像编解码器旨在最大程度地减少人类视觉系统的失真,而无需考虑机器视觉系统的需求增加。在这项工作中,我们为机器视觉任务提出了一种预处理增强的图像压缩方法,以应对这一挑战。我们的框架不是依靠学习的图像编解码器进行端到端优化,而是基于传统的非差异编解码器,这意味着它是标准兼容的,并且可以轻松地部署在实际应用中。具体而言,我们在编码器之前提出了一个神经预处理模块,以维护下游任务的有用语义信息,并抑制无关信息以节省比特率。此外,我们的神经预处理模块是量化自适应的,可用于不同的压缩比。更重要的是,要通过下游机器视觉任务共同优化预处理模块,我们在后传播阶段介绍了传统非差异编解码器的代理网络。我们通过评估具有不同骨干网络的两个代表性下游任务的压缩方法来提供广泛的实验。实验结果表明,我们的方法通过节省约20%的比特率来实现编码比特率和下游机器视觉任务的性能之间的更好权衡。
translated by 谷歌翻译
We describe an end-to-end trainable model for image compression based on variational autoencoders. The model incorporates a hyperprior to effectively capture spatial dependencies in the latent representation. This hyperprior relates to side information, a concept universal to virtually all modern image codecs, but largely unexplored in image compression using artificial neural networks (ANNs). Unlike existing autoencoder compression methods, our model trains a complex prior jointly with the underlying autoencoder. We demonstrate that this model leads to state-of-the-art image compression when measuring visual quality using the popular MS-SSIM index, and yields rate-distortion performance surpassing published ANN-based methods when evaluated using a more traditional metric based on squared error (PSNR). Furthermore, we provide a qualitative comparison of models trained for different distortion metrics.
translated by 谷歌翻译
在本文中,我们提出了一类新的高效的深源通道编码方法,可以在非线性变换下的源分布下,可以在名称非线性变换源通道编码(NTSCC)下收集。在所考虑的模型中,发射器首先了解非线性分析变换以将源数据映射到潜伏空间中,然后通过深关节源通道编码将潜在的表示发送到接收器。我们的模型在有效提取源语义特征并提供源通道编码的侧面信息之前,我们的模型包括强度。与现有的传统深度联合源通道编码方法不同,所提出的NTSCC基本上学习源潜像和熵模型,作为先前的潜在表示。因此,开发了新的自适应速率传输和高辅助辅助编解码器改进机制以升级深关节源通道编码。整个系统设计被制定为优化问题,其目标是最小化建立感知质量指标下的端到端传输率失真性能。在简单的示例源和测试图像源上,我们发现所提出的NTSCC传输方法通常优于使用标准的深关节源通道编码和基于经典分离的数字传输的模拟传输。值得注意的是,由于其剧烈的内容感知能力,所提出的NTSCC方法可能会支持未来的语义通信。
translated by 谷歌翻译
语义通信引起了人们的兴趣,因为它可以显着减少在不丢失关键信息的情况下要传输的数据量。大多数现有作品都探索文本的语义编码和传输,并在自然语言处理(NLP)中应用技术来解释文本的含义。在本文中,我们构想了图像数据的语义通信,这些语义数据在语义和带宽敏感方面更为丰富。我们提出了一种基于增强学习的自适应语义编码(RL-ASC)方法,该方法编码超过像素级别的图像。首先,我们定义了图像数据的语义概念,该概念包括类别,空间布置和视觉特征作为表示单元,并提出卷积语义编码器以提取语义概念。其次,我们提出了图像重建标准,该标准从传统像素的相似性演变为语义相似性和感知性能。第三,我们设计了一种基于RL的新型语义位分配模型,其奖励是用自适应量化水平编码某个语义概念后的速率语义感知性能的提高。因此,与任务相关的信息得到正确保存和重建,同时丢弃了较少重要的数据。最后,我们提出了基于生成的对抗网(GAN)的语义解码器,该语义解码器通过注意模块融合本地和全球特征。实验结果表明,所提出的RL-ASC具有噪声稳定性,可以重建视觉上令人愉悦和语义一致的图像,并节省与标准编解码器和其他基于深度学习的图像编解码器相比,可以节省位置的时间。
translated by 谷歌翻译
当涉及数码相机中的图像压缩时,传统上是在压缩之前执行的。但是,在某些应用中,可能需要进行图像噪声来证明图像的可信度,例如法院证据和图像取证。这意味着除干净的图像本身外,还需要编码噪声本身。在本文中,我们提出了一个基于学习的图像压缩框架,在该框架中共同执行图像denoising和压缩。图像编解码器的潜在空间以可扩展的方式组织,以便可以从潜在空间的子集(基础层)中解码清洁图像,而嘈杂的图像则以较高的速率从完整的潜在空间解码。使用潜在空间的子集作为剥落图像,可以以较低的速率进行deno。除了提供嘈杂的输入图像的可扩展表示外,用压缩共同执行deno,这是直观的意义,因为噪声很难压缩;因此,可压缩性是可能有助于区分信号的标准之一。将提出的编解码器与已建立的压缩和降解基准进行了比较,并且与最先进的编解码器和最先进的Denoiser的级联组合相比,实验显示了大量的比特率节省。
translated by 谷歌翻译
上下文自适应熵模型的应用显着提高了速率 - 渗透率(R-D)的性能,在该表现中,超级培训和自回归模型被共同利用来有效捕获潜在表示的空间冗余。但是,潜在表示仍然包含一些空间相关性。此外,这些基于上下文自适应熵模型的方法在解码过程中无法通过并行计算设备,例如FPGA或GPU。为了减轻这些局限性,我们提出了一个学识渊博的多分辨率图像压缩框架,该框架利用了最近开发的八度卷积,以将潜在表示形式分配到高分辨率(HR)和低分辨率(LR)部分,类似于小波变换,这进一步改善了R-D性能。为了加快解码的速度,我们的方案不使用上下文自适应熵模型。取而代之的是,我们利用一个额外的超层,包括超级编码器和超级解码器,以进一步删除潜在表示的空间冗余。此外,将跨分辨率参数估计(CRPE)引入提出的框架中,以增强信息流并进一步改善速率延伸性能。提出了对总损耗函数提出的其他信息损失,以调整LR部分对最终位流的贡献。实验结果表明,与最先进的学术图像压缩方法相比,我们的方法分别将解码时间减少了约73.35%和93.44%,R-D性能仍然优于H.266/VVC(4:4::4:: 2:0)以及对PSNR和MS-SSIM指标的一些基于学习的方法。
translated by 谷歌翻译
In recent years, neural image compression (NIC) algorithms have shown powerful coding performance. However, most of them are not adaptive to the image content. Although several content adaptive methods have been proposed by updating the encoder-side components, the adaptability of both latents and the decoder is not well exploited. In this work, we propose a new NIC framework that improves the content adaptability on both latents and the decoder. Specifically, to remove redundancy in the latents, our content adaptive channel dropping (CACD) method automatically selects the optimal quality levels for the latents spatially and drops the redundant channels. Additionally, we propose the content adaptive feature transformation (CAFT) method to improve decoder-side content adaptability by extracting the characteristic information of the image content, which is then used to transform the features in the decoder side. Experimental results demonstrate that our proposed methods with the encoder-side updating algorithm achieve the state-of-the-art performance.
translated by 谷歌翻译
视频编码技术已不断改进,以更高的分辨率以更高的压缩比。但是,最先进的视频编码标准(例如H.265/HEVC和多功能视频编码)仍在设计中,该假设将被人类观看。随着深度神经网络在解决计算机视觉任务方面的巨大进步和成熟,越来越多的视频通过无人参与的深度神经网络直接分析。当计算机视觉应用程序使用压缩视频时,这种传统的视频编码标准设计并不是最佳的。尽管人类视觉系统对具有高对比度的内容一直敏感,但像素对计算机视觉算法的影响是由特定的计算机视觉任务驱动的。在本文中,我们探索并总结了计算机视觉任务的视频编码和新兴视频编码标准,机器的视频编码。
translated by 谷歌翻译
我们提出了一种与变压器的端到端图像压缩和分析模型,针对基于云的图像分类应用程序。代替将现有的变换器的图像分类模型直接放置在图像编解码器之后,我们的目的是重新设计视觉变换器(VIV)模型,以从压缩特征执行图像分类,并促进来自变压器的长期信息的图像压缩。具体而言,我们首先用由卷积神经网络建模的轻量级图像编码器更换vit模型的涂抹杆(即图像分裂和嵌入)。由图像编码器产生的压缩特征被注入卷积电感偏压,并被馈送到变压器,用于绕过图像重建。同时,我们提出了一种特征聚合模块,使压缩特征熔断具有变压器的所选中间特征,并将聚合特征馈送到用于图像重建的解卷积神经网络。聚合特征可以从变压器的自我关注机构获得长期信息,并提高压缩性能。速率 - 失真准确度优化问题最终通过两步培训策略解决。实验结果证明了所提出的模型在图像压缩和分类任务中的有效性。
translated by 谷歌翻译
对于许多技术领域的专业用户,例如医学,遥感,精密工程和科学研究,无损和近乎无情的图像压缩至关重要。但是,尽管在基于学习的图像压缩方面的研究兴趣迅速增长,但没有发表的方法提供无损和近乎无情的模式。在本文中,我们提出了一个统一而强大的深层损失加上残留(DLPR)编码框架,以实现无损和近乎无情的图像压缩。在无损模式下,DLPR编码系统首先执行有损压缩,然后执行残差的无损编码。我们在VAE的方法中解决了关节损失和残留压缩问题,并添加残差的自回归上下文模型以增强无损压缩性能。在近乎荒谬的模式下,我们量化了原始残差以满足给定的$ \ ell_ \ infty $错误绑定,并提出了可扩展的近乎无情的压缩方案,该方案适用于可变$ \ ell_ \ infty $ bunds而不是训练多个网络。为了加快DLPR编码,我们通过新颖的编码环境设计提高了算法并行化的程度,并以自适应残留间隔加速熵编码。实验结果表明,DLPR编码系统以竞争性的编码速度实现了最先进的无损和近乎无效的图像压缩性能。
translated by 谷歌翻译
视觉信号压缩是一个长期存在的问题。通过深度学习的最近进步,令人兴奋的进展已经推动。尽管压缩性能更好,但现有的端到端压缩算法仍然以速率失真优化而设计更好的信号质量。在本文中,我们表明,网络架构的设计和优化可以进一步改善压缩机器视觉。我们为机器视觉的端到端压缩的编码器提出了一种反转的瓶颈结构,这特别考虑了语义信息的有效表示。此外,我们通过将分析精度纳入优化过程来追求优化的能力,并且通过以迭代方式进一步探索具有广义速率准确优化的最优性。我们使用对象检测作为展示用于机器视觉的端到端压缩,并且广泛的实验表明,该方案在分析性能方面实现了显着的BD速率。此外,由于信号电平重建,还对其他机器视觉任务的强大泛化能力表明了该方案的承诺。
translated by 谷歌翻译
随着事物(AIOT)的发展,在我们的日常工作和生活中产生了大量的视觉数据,例如图像和视频。这些视觉数据不仅用于人类观察或理解,而且用于机器分析或决策,例如智能监控,自动化车辆和许多其他智能城市应用。为此,在这项工作中提出了一种用于人机和机器使用的新图像编解码器范例。首先,利用神经网络提取高级实例分割图和低级信号特征。然后,实例分割图还被表示为具有所提出的16位灰度表示的简档。之后,两个16位灰度曲线和信号特征都以无损编解码器编码。同时,设计和培训图像预测器以实现具有16位灰度曲线简曲和信号特征的一般质量图像重建。最后,使用用于高质量图像重建的有损编解码器来压缩原始图像和预测的剩余地图。通过这种设计,一方面,我们可以实现可扩展的图像压缩,以满足不同人类消费的要求;另一方面,我们可以通过解码的16位灰度分布配置,例如对象分类,检测和分割,直接在解码器侧直接实现多个机器视觉任务。实验结果表明,该建议的编解码器在PSNR和MS-SSIM方面实现了基于大多数基于学习的编解码器,并且优于传统编解码器(例如,BPG和JPEG2000)以进行图像重建。同时,它在对象检测和分割的映射方面优于现有的编解码器。
translated by 谷歌翻译
We explore the use of Vector Quantized Variational AutoEncoder (VQ-VAE) models for large scale image generation. To this end, we scale and enhance the autoregressive priors used in VQ-VAE to generate synthetic samples of much higher coherence and fidelity than possible before. We use simple feed-forward encoder and decoder networks, making our model an attractive candidate for applications where the encoding and/or decoding speed is critical. Additionally, VQ-VAE requires sampling an autoregressive model only in the compressed latent space, which is an order of magnitude faster than sampling in the pixel space, especially for large images. We demonstrate that a multi-scale hierarchical organization of VQ-VAE, augmented with powerful priors over the latent codes, is able to generate samples with quality that rivals that of state of the art Generative Adversarial Networks on multifaceted datasets such as ImageNet, while not suffering from GAN's known shortcomings such as mode collapse and lack of diversity.
translated by 谷歌翻译
在近期深度图像压缩神经网络中,熵模型在估计深度图像编码的先前分配时起着重要作用。现有方法将HydupRior与熵估计功能中的本地上下文组合。由于没有全球愿景,这大大限制了他们的表现。在这项工作中,我们提出了一种新的全局参考模型,用于图像压缩,以有效地利用本地和全局上下文信息,导致增强的压缩率。所提出的方法扫描解码的潜伏,然后找到最相关的潜伏,以帮助分布估计当前潜伏。这项工作的副产品是一种平均转换GDN模块的创新,进一步提高了性能。实验结果表明,所提出的模型优于行业中大多数最先进方法的速率变形性能。
translated by 谷歌翻译