随着移动设备的普及,例如智能手机和可穿戴设备,更轻,更快的型号对于应用视频超级分辨率至关重要。但是,大多数以前的轻型模型倾向于集中于减少台式GPU模型推断的范围,这在当前的移动设备中可能不会节能。在本文中,我们提出了极端低功率超级分辨率(ELSR)网络,该网络仅在移动设备中消耗少量的能量。采用预训练和填充方法来提高极小模型的性能。广泛的实验表明,我们的方法在恢复质量和功耗之间取得了良好的平衡。最后,我们在目标总经理Dimenty 9000 PlantForm上,PSNR 27.34 dB和功率为0.09 w/30fps的竞争分数为90.9,在移动AI&AIM 2022实时视频超级分辨率挑战中排名第一。
translated by 谷歌翻译
Video super-resolution is one of the most popular tasks on mobile devices, being widely used for an automatic improvement of low-bitrate and low-resolution video streams. While numerous solutions have been proposed for this problem, they are usually quite computationally demanding, demonstrating low FPS rates and power efficiency on mobile devices. In this Mobile AI challenge, we address this problem and propose the participants to design an end-to-end real-time video super-resolution solution for mobile NPUs optimized for low energy consumption. The participants were provided with the REDS training dataset containing video sequences for a 4X video upscaling task. The runtime and power efficiency of all models was evaluated on the powerful MediaTek Dimensity 9000 platform with a dedicated AI processing unit capable of accelerating floating-point and quantized neural networks. All proposed solutions are fully compatible with the above NPU, demonstrating an up to 500 FPS rate and 0.2 [Watt / 30 FPS] power consumption. A detailed description of all models developed in the challenge is provided in this paper.
translated by 谷歌翻译
视频超分辨率(VSR)是从一系列低分辨率输入序列恢复高分辨率帧的任务。与单图超分辨率不同,VSR可以利用框架的时间信息来重建结果,并提供更多详细信息。最近,随着卷积神经网络(CNN)的快速发展,VSR任务引起了人们的关注,许多基于CNN的方法取得了显着的结果。但是,由于计算资源和运行时限制,只能将一些VSR方法应用于现实世界移动设备。在本文中,我们提出了一个\ textIt {基于滑动窗口的重复网络}(SWRN),该网络可以实时推断,同时仍能达到卓越的性能。具体而言,我们注意到视频帧应该具有可以帮助恢复细节的空间和时间关系,而关键点是如何提取和汇总信息。解决它,我们输入了三个相邻的帧,并利用隐藏状态来重复存储和更新重要的时间信息。我们在REDS数据集上的实验表明,所提出的方法可以很好地适应移动设备并产生视觉上令人愉悦的结果。
translated by 谷歌翻译
基于深度学习的单图像超分辨率(SISR)方法引起了人们的关注,并在现代高级GPU上取得了巨大的成功。但是,大多数最先进的方法都需要大量参数,记忆和计算资源,这些参数通常会显示在当前移动设备CPU/NPU上时显示出较低的推理时间。在本文中,我们提出了一个简单的普通卷积网络,该网络具有快速最近的卷积模块(NCNET),该模块对NPU友好,可以实时执行可靠的超级分辨率。提出的最近的卷积具有与最近的UP采样相同的性能,但更快,更适合Android NNAPI。我们的模型可以很容易地在具有8位量化的移动设备上部署,并且与所有主要的移动AI加速器完全兼容。此外,我们对移动设备上的不同张量操作进行了全面的实验,以说明网络体系结构的效率。我们的NCNET在DIV2K 3X数据集上进行了训练和验证,并且与其他有效的SR方法的比较表明,NCNET可以实现高保真SR结果,同时使用更少的推理时间。我们的代码和预估计的模型可在\ url {https://github.com/algolzw/ncnet}上公开获得。
translated by 谷歌翻译
本文回顾了AIM 2022上压缩图像和视频超级分辨率的挑战。这项挑战包括两条曲目。轨道1的目标是压缩图像的超分辨率,轨迹〜2靶向压缩视频的超分辨率。在轨道1中,我们使用流行的数据集DIV2K作为培训,验证和测试集。在轨道2中,我们提出了LDV 3.0数据集,其中包含365个视频,包括LDV 2.0数据集(335个视频)和30个其他视频。在这一挑战中,有12支球队和2支球队分别提交了赛道1和赛道2的最终结果。所提出的方法和解决方案衡量了压缩图像和视频上超分辨率的最先进。提出的LDV 3.0数据集可在https://github.com/renyang-home/ldv_dataset上找到。此挑战的首页是在https://github.com/renyang-home/aim22_compresssr。
translated by 谷歌翻译
随着卷积神经网络最近的大规模发展,已经提出了用于边缘设备上实用部署的大量基于CNN的显着图像超分辨率方法。但是,大多数现有方法都集中在一个特定方面:网络或损失设计,这导致难以最大程度地减少模型大小。为了解决这个问题,我们得出结论,设计,架构搜索和损失设计,以获得更有效的SR结构。在本文中,我们提出了一个名为EFDN的边缘增强功能蒸馏网络,以保留在约束资源下的高频信息。详细说明,我们基于现有的重新处理方法构建了一个边缘增强卷积块。同时,我们提出了边缘增强的梯度损失,以校准重新分配的路径训练。实验结果表明,我们的边缘增强策略可以保持边缘并显着提高最终恢复质量。代码可在https://github.com/icandle/efdn上找到。
translated by 谷歌翻译
较轻,更快的型号对于在资源有限设备(例如智能手机和可穿戴设备)上部署视频超分辨率(VSR)至关重要。在本文中,我们开发了残留的稀疏连接学习(RSCL),这是一种结构化的修剪方案,以减少卷积内核的冗余,并获得较小的性能下降的紧凑型VSR网络。但是,残留的块要求将跳过的修剪过滤器索引和残留连接相同,这对于修剪很棘手。因此,为了减轻剩余块的修剪限制,我们通过保留特征通道并仅在重要的通道上运行来设计残留的稀疏连接(RSC)方案。此外,对于Pixel-Shuffle操作,我们通过将几个过滤器分组为修剪单元来设计一种特殊的修剪方案,以确保修剪后功能通道空间转换的准确性。此外,我们引入了时间登录(TF),以减少具有时间传播的隐藏状态的修剪误差放大。广泛的实验表明,提出的RSCL在定量和质量上明显优于最新方法。代码和模型将发布。
translated by 谷歌翻译
Image super-resolution is a common task on mobile and IoT devices, where one often needs to upscale and enhance low-resolution images and video frames. While numerous solutions have been proposed for this problem in the past, they are usually not compatible with low-power mobile NPUs having many computational and memory constraints. In this Mobile AI challenge, we address this problem and propose the participants to design an efficient quantized image super-resolution solution that can demonstrate a real-time performance on mobile NPUs. The participants were provided with the DIV2K dataset and trained INT8 models to do a high-quality 3X image upscaling. The runtime of all models was evaluated on the Synaptics VS680 Smart Home board with a dedicated edge NPU capable of accelerating quantized neural networks. All proposed solutions are fully compatible with the above NPU, demonstrating an up to 60 FPS rate when reconstructing Full HD resolution images. A detailed description of all models developed in the challenge is provided in this paper.
translated by 谷歌翻译
基于常规卷积网络的视频超分辨率(VSR)方法具有很强的视频序列的时间建模能力。然而,在单向反复卷积网络中的不同反复单元接收的输入信息不平衡。早期重建帧接收较少的时间信息,导致模糊或工件效果。虽然双向反复卷积网络可以缓解这个问题,但它大大提高了重建时间和计算复杂性。它也不适用于许多应用方案,例如在线超分辨率。为了解决上述问题,我们提出了一种端到端信息预构建的经常性重建网络(IPRRN),由信息预构建网络(IPNet)和经常性重建网络(RRNET)组成。通过将足够的信息从视频的前面集成来构建初始复发单元所需的隐藏状态,以帮助恢复较早的帧,信息预构建的网络在不向后传播之前和之后的输入信息差异。此外,我们展示了一种紧凑的复发性重建网络,可显着改善恢复质量和时间效率。许多实验已经验证了我们所提出的网络的有效性,并与现有的最先进方法相比,我们的方法可以有效地实现更高的定量和定性评估性能。
translated by 谷歌翻译
不同于单图像超分辨率(SISR)任务,视频超分辨率(VSR)任务的键是在帧中充分利用互补信息来重建高分辨率序列。由于来自不同帧的图像具有不同的运动和场景,因此精确地对准多个帧并有效地融合不同的帧,这始终是VSR任务的关键研究工作。为了利用邻近框架的丰富互补信息,在本文中,我们提出了一种多级VSR深度架构,称为PP-MSVSR,局部融合模块,辅助损耗和重新对准模块,以逐步改进增强率。具体地,为了加强特征传播中帧的特征的融合,在阶段-1中设计了局部融合模块,以在特征传播之前执行局部特征融合。此外,我们在阶段-2中引入辅助损耗,使得通过传播模块获得的特征储备更多相关的信息连接到HR空间,并在阶段-3中引入重新对准模块以充分利用该特征信息前一阶段。广泛的实验证实,PP-MSVSR实现了VID4数据集的有希望的性能,其实现了28.13dB的PSNR,仅具有1.45米的参数。并且PP-MSVSR-L具有相当大的参数的REDS4数据集上的所有状态。代码和模型将在Paddlegan \脚注{https://github.com/paddlepaddle/paddlegan。}。
translated by 谷歌翻译
近年来,压缩图像超分辨率已引起了极大的关注,其中图像被压缩伪像和低分辨率伪影降解。由于复杂的杂化扭曲变形,因此很难通过简单的超分辨率和压缩伪像消除掉的简单合作来恢复扭曲的图像。在本文中,我们向前迈出了一步,提出了层次的SWIN变压器(HST)网络,以恢复低分辨率压缩图像,该图像共同捕获分层特征表示并分别用SWIN Transformer增强每个尺度表示。此外,我们发现具有超分辨率(SR)任务的预处理对于压缩图像超分辨率至关重要。为了探索不同的SR预审查的影响,我们将常用的SR任务(例如,比科比奇和不同的实际超分辨率仿真)作为我们的预处理任务,并揭示了SR在压缩的图像超分辨率中起不可替代的作用。随着HST和预训练的合作,我们的HST在AIM 2022挑战中获得了低质量压缩图像超分辨率轨道的第五名,PSNR为23.51db。广泛的实验和消融研究已经验证了我们提出的方法的有效性。
translated by 谷歌翻译
Video super-resolution (VSR) aiming to reconstruct a high-resolution (HR) video from its low-resolution (LR) counterpart has made tremendous progress in recent years. However, it remains challenging to deploy existing VSR methods to real-world data with complex degradations. On the one hand, there are few well-aligned real-world VSR datasets, especially with large super-resolution scale factors, which limits the development of real-world VSR tasks. On the other hand, alignment algorithms in existing VSR methods perform poorly for real-world videos, leading to unsatisfactory results. As an attempt to address the aforementioned issues, we build a real-world 4 VSR dataset, namely MVSR4$\times$, where low- and high-resolution videos are captured with different focal length lenses of a smartphone, respectively. Moreover, we propose an effective alignment method for real-world VSR, namely EAVSR. EAVSR takes the proposed multi-layer adaptive spatial transform network (MultiAdaSTN) to refine the offsets provided by the pre-trained optical flow estimation network. Experimental results on RealVSR and MVSR4$\times$ datasets show the effectiveness and practicality of our method, and we achieve state-of-the-art performance in real-world VSR task. The dataset and code will be publicly available.
translated by 谷歌翻译
Single Image Super-Resolution (SISR) tasks have achieved significant performance with deep neural networks. However, the large number of parameters in CNN-based met-hods for SISR tasks require heavy computations. Although several efficient SISR models have been recently proposed, most are handcrafted and thus lack flexibility. In this work, we propose a novel differentiable Neural Architecture Search (NAS) approach on both the cell-level and network-level to search for lightweight SISR models. Specifically, the cell-level search space is designed based on an information distillation mechanism, focusing on the combinations of lightweight operations and aiming to build a more lightweight and accurate SR structure. The network-level search space is designed to consider the feature connections among the cells and aims to find which information flow benefits the cell most to boost the performance. Unlike the existing Reinforcement Learning (RL) or Evolutionary Algorithm (EA) based NAS methods for SISR tasks, our search pipeline is fully differentiable, and the lightweight SISR models can be efficiently searched on both the cell-level and network-level jointly on a single GPU. Experiments show that our methods can achieve state-of-the-art performance on the benchmark datasets in terms of PSNR, SSIM, and model complexity with merely 68G Multi-Adds for $\times 2$ and 18G Multi-Adds for $\times 4$ SR tasks.
translated by 谷歌翻译
时空视频超分辨率(STVSR)旨在从相应的低帧速率,低分辨率视频序列构建高空时间分辨率视频序列。灵感来自最近的成功,考虑空间时间超级分辨率的空间信息,我们在这项工作中的主要目标是在快速动态事件的视频序列中充分考虑空间和时间相关性。为此,我们提出了一种新颖的单级内存增强图注意网络(Megan),用于时空视频超分辨率。具体地,我们构建新颖的远程存储图聚合(LMGA)模块,以沿着特征映射的信道尺寸动态捕获相关性,并自适应地聚合信道特征以增强特征表示。我们介绍了一个非本地剩余块,其使每个通道明智的功能能够参加全局空间分层特征。此外,我们采用渐进式融合模块通过广泛利用来自多个帧的空间 - 时间相关性来进一步提高表示能力。实验结果表明,我们的方法与定量和视觉上的最先进的方法相比,实现了更好的结果。
translated by 谷歌翻译
This paper reviews the first challenge on single image super-resolution (restoration of rich details in an low resolution image) with focus on proposed solutions and results.A new DIVerse 2K resolution image dataset (DIV2K) was employed. The challenge had 6 competitions divided into 2 tracks with 3 magnification factors each. Track 1 employed the standard bicubic downscaling setup, while Track 2 had unknown downscaling operators (blur kernel and decimation) but learnable through low and high res train images. Each competition had ∼ 100 registered participants and 20 teams competed in the final testing phase. They gauge the state-of-the-art in single image super-resolution.
translated by 谷歌翻译
近年来,基于深度学习的模型在视频超分辨率(VSR)方面取得了显着性能,但是这些模型中的大多数不适用于在线视频应用程序。这些方法仅考虑失真质量,而忽略了在线应用程序的关键要求,例如低延迟和模型较低的复杂性。在本文中,我们专注于在线视频传输,其中需要VSR算法来实时生成高分辨率的视频序列。为了应对此类挑战,我们提出了一种基于一种新的内核知识转移方法,称为卷积核旁路移植物(CKBG)。首先,我们设计了一个轻巧的网络结构,该结构不需要将来的帧作为输入,并节省了缓存这些帧的额外时间成本。然后,我们提出的CKBG方法通过用``核移植物)''绕过原始网络来增强这种轻巧的基础模型,这些网络是包含外部预验证图像SR模型的先验知识的额外卷积内核。在测试阶段,我们通过将其转换为简单的单路结构来进一步加速移植的多支球网络。实验结果表明,我们提出的方法可以处理高达110 fps的在线视频序列,并且模型复杂性非常低和竞争性SR性能。
translated by 谷歌翻译
Recent research on super-resolution has progressed with the development of deep convolutional neural networks (DCNN). In particular, residual learning techniques exhibit improved performance. In this paper, we develop an enhanced deep super-resolution network (EDSR) with performance exceeding those of current state-of-the-art SR methods. The significant performance improvement of our model is due to optimization by removing unnecessary modules in conventional residual networks. The performance is further improved by expanding the model size while we stabilize the training procedure. We also propose a new multi-scale deep super-resolution system (MDSR) and training method, which can reconstruct high-resolution images of different upscaling factors in a single model. The proposed methods show superior performance over the state-of-the-art methods on benchmark datasets and prove its excellence by winning the NTIRE2017 Super-Resolution Challenge [26].
translated by 谷歌翻译
现有视频超分辨率(VSR)算法的成功主要是从相邻框架中利用时间信息。但是,这些方法都没有讨论带有固定物体和背景的贴片中时间冗余的影响,并且通常使用相邻框架中的所有信息而没有任何歧视。在本文中,我们观察到时间冗余将对信息传播产生不利影响,这限制了最现有的VSR方法的性能。在这一观察结果的推动下,我们旨在通过以优化的方式处理时间冗余贴片来改善现有的VSR算法。我们开发了两种简单但有效的插件方法,以提高广泛使用的公共视频中现有的本地和非本地传播算法的性能。为了更全面地评估现有VSR算法的鲁棒性和性能,我们还收集了一个新数据集,其中包含各种公共视频作为测试集。广泛的评估表明,所提出的方法可以显着提高野生场景中收集的视频的现有VSR方法的性能,同时保持其在现有常用数据集上的性能。该代码可在https://github.com/hyhsimon/boosted-vsr上找到。
translated by 谷歌翻译
我们为移动设备提出了一个轻巧的单图超分辨率网络,名为XCAT。XCAT引入了具有交叉串联(HXBLOCK)的异质群卷积块。输入通道向组卷积块的异质拆分减少了操作数量,交叉串联允许在级联HXBlocks的中间输入张量之间进行信息流。HXBlocks内部的交叉串联也可以避免使用更昂贵的操作,例如1x1卷积。为了进一步预见昂贵的张量副本操作,XCAT利用不可训练的卷积内核来应用采样操作。XCAT考虑了整数量化的设计,还利用了几种技术,例如基于强度的数据增强。Integer的XCAT量化XCAT可在320ms的Mali-G71 MP2 GPU上实时运行,以及适用于实时应用的30ms(NCHW)和8.8ms(NHWC)的Synaptics Dolphin NPU。
translated by 谷歌翻译
In recent years, deep learning methods have been successfully applied to single-image super-resolution tasks. Despite their great performances, deep learning methods cannot be easily applied to realworld applications due to the requirement of heavy computation. In this paper, we address this issue by proposing an accurate and lightweight deep network for image super-resolution. In detail, we design an architecture that implements a cascading mechanism upon a residual network. We also present variant models of the proposed cascading residual network to further improve efficiency. Our extensive experiments show that even with much fewer parameters and operations, our models achieve performance comparable to that of state-of-the-art methods.
translated by 谷歌翻译