截断的线性回归是统计学中的一个经典挑战,其中$ y = w^t x + \ varepsilon $及其相应的功能向量,$ x \ in \ mathbb {r}^k $,仅在当时才观察到标签属于某些子集$ s \ subseteq \ mathbb {r} $;否则,对$(x,y)$的存在被隐藏在观察中。以截断的观察结果的线性回归一直是其一般形式的挑战,因为〜\ citet {tobin1958估计,amemiya1973 reflecression}的早期作品。当误差的分布与已知方差正常时,〜\ citet {daskalakis2019 truncatedRegerse}的最新工作在线性模型$ w $上提供了计算和统计上有效的估计器。在本文中,当噪声方差未知时,我们为截断的线性回归提供了第一个计算和统计上有效的估计器,同时估计了噪声的线性模型和方差。我们的估计器基于对截短样品的负模样中的预测随机梯度下降的有效实施。重要的是,我们表明我们的估计错误是渐近正常的,我们使用它来为我们的估计提供明确的置信区域。
translated by 谷歌翻译
In the classical setting of self-selection, the goal is to learn $k$ models, simultaneously from observations $(x^{(i)}, y^{(i)})$ where $y^{(i)}$ is the output of one of $k$ underlying models on input $x^{(i)}$. In contrast to mixture models, where we observe the output of a randomly selected model, here the observed model depends on the outputs themselves, and is determined by some known selection criterion. For example, we might observe the highest output, the smallest output, or the median output of the $k$ models. In known-index self-selection, the identity of the observed model output is observable; in unknown-index self-selection, it is not. Self-selection has a long history in Econometrics and applications in various theoretical and applied fields, including treatment effect estimation, imitation learning, learning from strategically reported data, and learning from markets at disequilibrium. In this work, we present the first computationally and statistically efficient estimation algorithms for the most standard setting of this problem where the models are linear. In the known-index case, we require poly$(1/\varepsilon, k, d)$ sample and time complexity to estimate all model parameters to accuracy $\varepsilon$ in $d$ dimensions, and can accommodate quite general selection criteria. In the more challenging unknown-index case, even the identifiability of the linear models (from infinitely many samples) was not known. We show three results in this case for the commonly studied $\max$ self-selection criterion: (1) we show that the linear models are indeed identifiable, (2) for general $k$ we provide an algorithm with poly$(d) \exp(\text{poly}(k))$ sample and time complexity to estimate the regression parameters up to error $1/\text{poly}(k)$, and (3) for $k = 2$ we provide an algorithm for any error $\varepsilon$ and poly$(d, 1/\varepsilon)$ sample and time complexity.
translated by 谷歌翻译
通过在线规范相关性分析的问题,我们提出了\ emph {随机缩放梯度下降}(SSGD)算法,以最小化通用riemannian歧管上的随机功能的期望。 SSGD概括了投影随机梯度下降的思想,允许使用缩放的随机梯度而不是随机梯度。在特殊情况下,球形约束的特殊情况,在广义特征向量问题中产生的,我们建立了$ \ sqrt {1 / t} $的令人反感的有限样本,并表明该速率最佳最佳,直至具有积极的积极因素相关参数。在渐近方面,一种新的轨迹平均争论使我们能够实现局部渐近常态,其速率与鲁普特 - Polyak-Quaditsky平均的速率匹配。我们将这些想法携带在一个在线规范相关分析,从事文献中的第一次获得了最佳的一次性尺度算法,其具有局部渐近融合到正常性的最佳一次性尺度算法。还提供了用于合成数据的规范相关分析的数值研究。
translated by 谷歌翻译
Influence diagnostics such as influence functions and approximate maximum influence perturbations are popular in machine learning and in AI domain applications. Influence diagnostics are powerful statistical tools to identify influential datapoints or subsets of datapoints. We establish finite-sample statistical bounds, as well as computational complexity bounds, for influence functions and approximate maximum influence perturbations using efficient inverse-Hessian-vector product implementations. We illustrate our results with generalized linear models and large attention based models on synthetic and real data.
translated by 谷歌翻译
我们研究了在存在$ \ epsilon $ - 对抗异常值的高维稀疏平均值估计的问题。先前的工作为此任务获得了该任务的样本和计算有效算法,用于辅助性Subgaussian分布。在这项工作中,我们开发了第一个有效的算法,用于强大的稀疏平均值估计,而没有对协方差的先验知识。对于$ \ Mathbb r^d $上的分布,带有“认证有限”的$ t $ tum-矩和足够轻的尾巴,我们的算法达到了$ o(\ epsilon^{1-1/t})$带有样品复杂性$的错误(\ epsilon^{1-1/t}) m =(k \ log(d))^{o(t)}/\ epsilon^{2-2/t} $。对于高斯分布的特殊情况,我们的算法达到了$ \ tilde o(\ epsilon)$的接近最佳错误,带有样品复杂性$ m = o(k^4 \ mathrm {polylog}(d)(d))/\ epsilon^^ 2 $。我们的算法遵循基于方形的总和,对算法方法的证明。我们通过统计查询和低度多项式测试的下限来补充上限,提供了证据,表明我们算法实现的样本时间 - 错误权衡在质量上是最好的。
translated by 谷歌翻译
We study the relationship between adversarial robustness and differential privacy in high-dimensional algorithmic statistics. We give the first black-box reduction from privacy to robustness which can produce private estimators with optimal tradeoffs among sample complexity, accuracy, and privacy for a wide range of fundamental high-dimensional parameter estimation problems, including mean and covariance estimation. We show that this reduction can be implemented in polynomial time in some important special cases. In particular, using nearly-optimal polynomial-time robust estimators for the mean and covariance of high-dimensional Gaussians which are based on the Sum-of-Squares method, we design the first polynomial-time private estimators for these problems with nearly-optimal samples-accuracy-privacy tradeoffs. Our algorithms are also robust to a constant fraction of adversarially-corrupted samples.
translated by 谷歌翻译
我们提出了一种基于优化的基于优化的框架,用于计算差异私有M估算器以及构建差分私立置信区的新方法。首先,我们表明稳健的统计数据可以与嘈杂的梯度下降或嘈杂的牛顿方法结合使用,以便分别获得具有全局线性或二次收敛的最佳私人估算。我们在局部强大的凸起和自我协调下建立当地和全球融合保障,表明我们的私人估算变为对非私人M估计的几乎最佳附近的高概率。其次,我们通过构建我们私有M估计的渐近方差的差异私有估算来解决参数化推断的问题。这自然导致近​​似枢轴统计,用于构建置信区并进行假设检测。我们展示了偏置校正的有效性,以提高模拟中的小样本实证性能。我们说明了我们在若干数值例子中的方法的好处。
translated by 谷歌翻译
我们在高斯分布下使用Massart噪声与Massart噪声进行PAC学习半个空间的问题。在Massart模型中,允许对手将每个点$ \ mathbf {x} $的标签与未知概率$ \ eta(\ mathbf {x})\ leq \ eta $,用于某些参数$ \ eta \ [0,1 / 2] $。目标是找到一个假设$ \ mathrm {opt} + \ epsilon $的错误分类错误,其中$ \ mathrm {opt} $是目标半空间的错误。此前已经在两个假设下研究了这个问题:(i)目标半空间是同质的(即,分离超平面通过原点),并且(ii)参数$ \ eta $严格小于$ 1/2 $。在此工作之前,当除去这些假设中的任何一个时,不知道非增长的界限。我们研究了一般问题并建立以下内容:对于$ \ eta <1/2 $,我们为一般半个空间提供了一个学习算法,采用样本和计算复杂度$ d ^ {o_ {\ eta}(\ log(1 / \ gamma) )))}} \ mathrm {poly}(1 / \ epsilon)$,其中$ \ gamma = \ max \ {\ epsilon,\ min \ {\ mathbf {pr} [f(\ mathbf {x})= 1], \ mathbf {pr} [f(\ mathbf {x})= -1] \} \} $是目标半空间$ f $的偏差。现有的高效算法只能处理$ \ gamma = 1/2 $的特殊情况。有趣的是,我们建立了$ d ^ {\ oomega(\ log(\ log(\ log(\ log))}}的质量匹配的下限,而是任何统计查询(SQ)算法的复杂性。对于$ \ eta = 1/2 $,我们为一般半空间提供了一个学习算法,具有样本和计算复杂度$ o_ \ epsilon(1)d ^ {o(\ log(1 / epsilon))} $。即使对于均匀半空间的子类,这个结果也是新的;均匀Massart半个空间的现有算法为$ \ eta = 1/2 $提供可持续的保证。我们与D ^ {\ omega(\ log(\ log(\ log(\ log(\ epsilon))} $的近似匹配的sq下限补充了我们的上限,这甚至可以为同类半空间的特殊情况而保持。
translated by 谷歌翻译
The implicit stochastic gradient descent (ISGD), a proximal version of SGD, is gaining interest in the literature due to its stability over (explicit) SGD. In this paper, we conduct an in-depth analysis of the two modes of ISGD for smooth convex functions, namely proximal Robbins-Monro (proxRM) and proximal Poylak-Ruppert (proxPR) procedures, for their use in statistical inference on model parameters. Specifically, we derive nonasymptotic point estimation error bounds of both proxRM and proxPR iterates and their limiting distributions, and propose on-line estimators of their asymptotic covariance matrices that require only a single run of ISGD. The latter estimators are used to construct valid confidence intervals for the model parameters. Our analysis is free of the generalized linear model assumption that has limited the preceding analyses, and employs feasible procedures. Our on-line covariance matrix estimators appear to be the first of this kind in the ISGD literature.* Equal contribution 1 Kakao Entertainment Corp.
translated by 谷歌翻译
我们提供了新的基于梯度的方法,以便有效解决广泛的病态化优化问题。我们考虑最小化函数$ f:\ mathbb {r} ^ d \ lightarrow \ mathbb {r} $的问题,它是隐含的可分解的,作为$ m $未知的非交互方式的总和,强烈的凸起功能并提供方法这解决了这个问题,这些问题是缩放(最快的对数因子)作为组件的条件数量的平方根的乘积。这种复杂性绑定(我们证明几乎是最佳的)可以几乎指出的是加速梯度方法的几乎是指数的,这将作为$ F $的条件数量的平方根。此外,我们提供了求解该多尺度优化问题的随机异标变体的有效方法。而不是学习$ F $的分解(这将是过度昂贵的),而是我们的方法应用一个清洁递归“大步小步”交错标准方法。由此产生的算法使用$ \ tilde {\ mathcal {o}}(d m)$空间,在数字上稳定,并打开门以更细粒度的了解凸优化超出条件号的复杂性。
translated by 谷歌翻译
我们研究了学习单个神经元的基本问题,即$ \ mathbf {x} \ mapsto \ sigma(\ mathbf {w} \ cdot \ cdot \ mathbf {x})$单调激活$ \ sigma $ \ sigma: \ mathbb {r} \ mapsto \ mathbb {r} $,相对于$ l_2^2 $ -loss,在存在对抗标签噪声的情况下。具体来说,我们将在$(\ mathbf {x},y)\ in \ mathbb {r}^d \ times \ times \ mathbb {r} $上给我们从$(\ mathbf {x},y)\ on a发行$ d $中给我们标记的示例。 }^\ ast \ in \ mathbb {r}^d $ achieving $ f(\ mathbf {w}^\ ast)= \ epsilon $,其中$ f(\ mathbf {w})= \ m马理bf {e} (\ mathbf {x},y)\ sim d} [(\ sigma(\ mathbf {w} \ cdot \ mathbf {x}) - y)^2] $。学习者的目标是输出假设向量$ \ mathbf {w} $,以使$ f(\ m athbb {w})= c \,\ epsilon $具有高概率,其中$ c> 1 $是通用常数。作为我们的主要贡献,我们为广泛的分布(包括对数 - 循环分布)和激活功能提供有效的恒定因素近似学习者。具体地说,对于各向同性对数凸出分布的类别,我们获得以下重要的推论:对于逻辑激活,我们获得了第一个多项式时间常数因子近似(即使在高斯分布下)。我们的算法具有样品复杂性$ \ widetilde {o}(d/\ epsilon)$,这在多毛体因子中很紧。对于relu激活,我们给出了一个有效的算法,带有样品复杂性$ \ tilde {o}(d \,\ polylog(1/\ epsilon))$。在我们工作之前,最著名的常数因子近似学习者具有样本复杂性$ \ tilde {\ omega}(d/\ epsilon)$。在这两个设置中,我们的算法很简单,在(正规)$ L_2^2 $ -LOSS上执行梯度散发。我们的算法的正确性取决于我们确定的新结构结果,表明(本质上是基本上)基础非凸损失的固定点大约是最佳的。
translated by 谷歌翻译
We propose a new method for estimating the minimizer $\boldsymbol{x}^*$ and the minimum value $f^*$ of a smooth and strongly convex regression function $f$ from the observations contaminated by random noise. Our estimator $\boldsymbol{z}_n$ of the minimizer $\boldsymbol{x}^*$ is based on a version of the projected gradient descent with the gradient estimated by a regularized local polynomial algorithm. Next, we propose a two-stage procedure for estimation of the minimum value $f^*$ of regression function $f$. At the first stage, we construct an accurate enough estimator of $\boldsymbol{x}^*$, which can be, for example, $\boldsymbol{z}_n$. At the second stage, we estimate the function value at the point obtained in the first stage using a rate optimal nonparametric procedure. We derive non-asymptotic upper bounds for the quadratic risk and optimization error of $\boldsymbol{z}_n$, and for the risk of estimating $f^*$. We establish minimax lower bounds showing that, under certain choice of parameters, the proposed algorithms achieve the minimax optimal rates of convergence on the class of smooth and strongly convex functions.
translated by 谷歌翻译
We consider minimizing a smooth and strongly convex objective function using a stochastic Newton method. At each iteration, the algorithm is given an oracle access to a stochastic estimate of the Hessian matrix. The oracle model includes popular algorithms such as Subsampled Newton and Newton Sketch. Despite using second-order information, these existing methods do not exhibit superlinear convergence, unless the stochastic noise is gradually reduced to zero during the iteration, which would lead to a computational blow-up in the per-iteration cost. We propose to address this limitation with Hessian averaging: instead of using the most recent Hessian estimate, our algorithm maintains an average of all the past estimates. This reduces the stochastic noise while avoiding the computational blow-up. We show that this scheme exhibits local $Q$-superlinear convergence with a non-asymptotic rate of $(\Upsilon\sqrt{\log (t)/t}\,)^{t}$, where $\Upsilon$ is proportional to the level of stochastic noise in the Hessian oracle. A potential drawback of this (uniform averaging) approach is that the averaged estimates contain Hessian information from the global phase of the method, i.e., before the iterates converge to a local neighborhood. This leads to a distortion that may substantially delay the superlinear convergence until long after the local neighborhood is reached. To address this drawback, we study a number of weighted averaging schemes that assign larger weights to recent Hessians, so that the superlinear convergence arises sooner, albeit with a slightly slower rate. Remarkably, we show that there exists a universal weighted averaging scheme that transitions to local convergence at an optimal stage, and still exhibits a superlinear convergence rate nearly (up to a logarithmic factor) matching that of uniform Hessian averaging.
translated by 谷歌翻译
Online learning naturally arises in many statistical and machine learning problems. The most widely used methods in online learning are stochastic first-order algorithms. Among this family of algorithms, there is a recently developed algorithm, Recursive One-Over-T SGD (ROOT-SGD). ROOT-SGD is advantageous in that it converges at a non-asymptotically fast rate, and its estimator further converges to a normal distribution. However, this normal distribution has unknown asymptotic covariance; thus cannot be directly applied to measure the uncertainty. To fill this gap, we develop two estimators for the asymptotic covariance of ROOT-SGD. Our covariance estimators are useful for statistical inference in ROOT-SGD. Our first estimator adopts the idea of plug-in. For each unknown component in the formula of the asymptotic covariance, we substitute it with its empirical counterpart. The plug-in estimator converges at the rate $\mathcal{O}(1/\sqrt{t})$, where $t$ is the sample size. Despite its quick convergence, the plug-in estimator has the limitation that it relies on the Hessian of the loss function, which might be unavailable in some cases. Our second estimator is a Hessian-free estimator that overcomes the aforementioned limitation. The Hessian-free estimator uses the random-scaling technique, and we show that it is an asymptotically consistent estimator of the true covariance.
translated by 谷歌翻译
在负面的感知问题中,我们给出了$ n $数据点$({\ boldsymbol x} _i,y_i)$,其中$ {\ boldsymbol x} _i $是$ d $ -densional vector和$ y_i \ in \ { + 1,-1 \} $是二进制标签。数据不是线性可分离的,因此我们满足自己的内容,以找到最大的线性分类器,具有最大的\ emph {否定}余量。换句话说,我们想找到一个单位常规矢量$ {\ boldsymbol \ theta} $,最大化$ \ min_ {i \ le n} y_i \ langle {\ boldsymbol \ theta},{\ boldsymbol x} _i \ rangle $ 。这是一个非凸优化问题(它相当于在Polytope中找到最大标准矢量),我们在两个随机模型下研究其典型属性。我们考虑比例渐近,其中$ n,d \ to \ idty $以$ n / d \ to \ delta $,并在最大边缘$ \ kappa _ {\ text {s}}(\ delta)上证明了上限和下限)$或 - 等效 - 在其逆函数$ \ delta _ {\ text {s}}(\ kappa)$。换句话说,$ \ delta _ {\ text {s}}(\ kappa)$是overparametization阈值:以$ n / d \ le \ delta _ {\ text {s}}(\ kappa) - \ varepsilon $一个分类器实现了消失的训练错误,具有高概率,而以$ n / d \ ge \ delta _ {\ text {s}}(\ kappa)+ \ varepsilon $。我们在$ \ delta _ {\ text {s}}(\ kappa)$匹配,以$ \ kappa \ to - \ idty $匹配。然后,我们分析了线性编程算法来查找解决方案,并表征相应的阈值$ \ delta _ {\ text {lin}}(\ kappa)$。我们观察插值阈值$ \ delta _ {\ text {s}}(\ kappa)$和线性编程阈值$ \ delta _ {\ text {lin {lin}}(\ kappa)$之间的差距,提出了行为的问题其他算法。
translated by 谷歌翻译
在本文中,我们通过随机搜索方向的Kiefer-Wolfowitz算法调查了随机优化问题模型参数的统计参数问题。我们首先介绍了Polyak-ruppert-veriving型Kiefer-Wolfowitz(AKW)估计器的渐近分布,其渐近协方差矩阵取决于函数查询复杂性和搜索方向的分布。分布结果反映了统计效率与函数查询复杂性之间的权衡。我们进一步分析了随机搜索方向的选择来最小化渐变协方差矩阵,并得出结论,最佳搜索方向取决于相对于Fisher信息矩阵的不同摘要统计的最优标准。根据渐近分布结果,我们通过提供两个有效置信区间的结构进行一次通过统计推理。我们提供了验证我们的理论结果的数值实验,并通过程序的实际效果。
translated by 谷歌翻译
许多感兴趣的功能在高维空间中,但表现出低维结构。本文研究了$ s $ -h \“{o}} {o}} \ m $ \ mathbb {r} ^ d $的回归,这沿着维度$ d $的中央子空间差异,而$ d \ ll d $。 $ \ mathbb {r} ^ d $的直接逼近$ \ varepsilon $准确性需要$ \ varepsilon ^ { - (2s + d)/ s}的样本$ n $的样本数量。 $。在本文中,我们分析了用于估计中央子空间的广义轮廓回归(GCR)算法,并使用分段多项式进行函数近似。GCR是中央子空间的最佳估计值,但其样本复杂性是一个打开的问题。如果恰恰知道差异数量,我们证明了GCR导致中央子空间的US(n ^ {-1})$的平均平方估计误差。本文还给出了这种差异量的估计误差。证明$ y $的平均平方回归误差是按​​$ \ left的顺序(n / \ log n \ over)^ { - \ frac {2s} {2s + d}} $ indown所取得的中央子空间的维度$ d $环境空间$ d $。该结果表明GCR在学习低维中央子空间方面是有效的。我们还提出了一种改进的GCR,效率提高。通过若干数值实验验证收敛速率。
translated by 谷歌翻译
我们调查与高斯的混合的数据分享共同但未知,潜在虐待协方差矩阵的数据。我们首先考虑具有两个等级大小的组件的高斯混合,并根据最大似然估计导出最大切割整数程序。当样品的数量在维度下线性增长时,我们证明其解决方案实现了最佳的错误分类率,直到对数因子。但是,解决最大切割问题似乎是在计算上棘手的。为了克服这一点,我们开发了一种高效的频谱算法,该算法达到最佳速率,但需要一种二次样本量。虽然这种样本复杂性比最大切割问题更差,但我们猜测没有多项式方法可以更好地执行。此外,我们收集了支持统计计算差距存在的数值和理论证据。最后,我们将MAX-CUT程序概括为$ k $ -means程序,该程序处理多组分混合物的可能性不平等。它享有相似的最优性保证,用于满足运输成本不平等的分布式的混合物,包括高斯和强烈的对数的分布。
translated by 谷歌翻译
元学习或学习学习,寻求设计算法,可以利用以前的经验快速学习新技能或适应新环境。表示学习 - 用于执行元学习的关键工具 - 了解可以在多个任务中传输知识的数据表示,这在数据稀缺的状态方面是必不可少的。尽管最近在Meta-Leature的实践中感兴趣的兴趣,但缺乏元学习算法的理论基础,特别是在学习可转让陈述的背景下。在本文中,我们专注于多任务线性回归的问题 - 其中多个线性回归模型共享常见的低维线性表示。在这里,我们提供了可提供的快速,采样高效的算法,解决了(1)的双重挑战,从多个相关任务和(2)将此知识转移到新的,看不见的任务中的常见功能。两者都是元学习的一般问题的核心。最后,我们通过在学习这些线性特征的样本复杂性上提供信息定理下限来补充这些结果。
translated by 谷歌翻译
对于高维和非参数统计模型,速率最优估计器平衡平方偏差和方差是一种常见的现象。虽然这种平衡被广泛观察到,但很少知道是否存在可以避免偏差和方差之间的权衡的方法。我们提出了一般的策略,以获得对任何估计方差的下限,偏差小于预先限定的界限。这表明偏差差异折衷的程度是不可避免的,并且允许量化不服从其的方法的性能损失。该方法基于许多抽象的下限,用于涉及关于不同概率措施的预期变化以及诸如Kullback-Leibler或Chi-Sque-diversence的信息措施的变化。其中一些不平等依赖于信息矩阵的新概念。在该物品的第二部分中,将抽象的下限应用于几种统计模型,包括高斯白噪声模型,边界估计问题,高斯序列模型和高维线性回归模型。对于这些特定的统计应用,发生不同类型的偏差差异发生,其实力变化很大。对于高斯白噪声模型中集成平方偏置和集成方差之间的权衡,我们将较低界限的一般策略与减少技术相结合。这允许我们将原始问题与估计的估计器中的偏差折衷联动,以更简单的统计模型中具有额外的对称性属性。在高斯序列模型中,发生偏差差异的不同相位转换。虽然偏差和方差之间存在非平凡的相互作用,但是平方偏差的速率和方差不必平衡以实现最小估计速率。
translated by 谷歌翻译