最近,已经积极研究了从无条件生成的对抗网络(GANS)产生的来自无条件生成的对抗网络(GANS)来改善整体图像质量的子采样或精炼图像。不幸的是,这些方法通常观察到处理条件GAN(CGANS) - 在类(AKA类条件GANS)或连续变量(AKA连续CGANs或CCGANs)上调节条件的效率较低或效率低。在这项工作中,我们引入了一个有效且有效的回顾性方案,命名为条件密度比引导抑制采样(CDR-RS),以从CGANS采样高质量的图像。具体地,我们首先制定一种新的条件密度比估计方法,称为CDRE-F-CSP,通过提出条件的SOFTPLUS(CSP)损耗和改进的特征提取机制。然后,我们导出了在CSP丢失训练的密度比模型的误差。最后,我们在其估计的条件密度比方面接受或拒绝假图像。还开发了一种过滤方案以增加假图像的标签一致性,而不会在从CCGANs采样时失去多样性。我们在五个基准数据集中广泛地测试CDR-RS的有效性和效率在各种条件的GANS和CCGANS中取样。当从类条件的GAN进行采样时,CDR-RS在有效性方面,CDR-RS通过大型余量(除DRE-F-SP + RS除外)优于现代最先进的方法。尽管CDR-RS的有效性通常与DRE-F-SP + RS的有效性相当,但CDR-RS基本上更有效。当从CCGANS取样时,在有效性和效率方面,CDR-RS的优越性甚至更加明显。值得注意的是,随着合理的计算资源的消耗,CDR-RS可以大大减少标签分数而不降低CCGAN生成的图像的多样性,而其他方法通常需要交易大量的多样性以略微改善标签分数。
translated by 谷歌翻译
This work proposes the continuous conditional generative adversarial network (CcGAN), the first generative model for image generation conditional on continuous, scalar conditions (termed regression labels). Existing conditional GANs (cGANs) are mainly designed for categorical conditions (eg, class labels); conditioning on regression labels is mathematically distinct and raises two fundamental problems:(P1) Since there may be very few (even zero) real images for some regression labels, minimizing existing empirical versions of cGAN losses (aka empirical cGAN losses) often fails in practice;(P2) Since regression labels are scalar and infinitely many, conventional label input methods are not applicable. The proposed CcGAN solves the above problems, respectively, by (S1) reformulating existing empirical cGAN losses to be appropriate for the continuous scenario; and (S2) proposing a naive label input (NLI) method and an improved label input (ILI) method to incorporate regression labels into the generator and the discriminator. The reformulation in (S1) leads to two novel empirical discriminator losses, termed the hard vicinal discriminator loss (HVDL) and the soft vicinal discriminator loss (SVDL) respectively, and a novel empirical generator loss. The error bounds of a discriminator trained with HVDL and SVDL are derived under mild assumptions in this work. Two new benchmark datasets (RC-49 and Cell-200) and a novel evaluation metric (Sliding Fr\'echet Inception Distance) are also proposed for this continuous scenario. Our experiments on the Circular 2-D Gaussians, RC-49, UTKFace, Cell-200, and Steering Angle datasets show that CcGAN is able to generate diverse, high-quality samples from the image distribution conditional on a given regression label. Moreover, in these experiments, CcGAN substantially outperforms cGAN both visually and quantitatively.
translated by 谷歌翻译
Knowledge distillation (KD) has been actively studied for image classification tasks in deep learning, aiming to improve the performance of a student based on the knowledge from a teacher. However, applying KD in image regression with a scalar response variable has been rarely studied, and there exists no KD method applicable to both classification and regression tasks yet. Moreover, existing KD methods often require a practitioner to carefully select or adjust the teacher and student architectures, making these methods less flexible in practice. To address the above problems in a unified way, we propose a comprehensive KD framework based on cGANs, termed cGAN-KD. Fundamentally different from existing KD methods, cGAN-KD distills and transfers knowledge from a teacher model to a student model via cGAN-generated samples. This novel mechanism makes cGAN-KD suitable for both classification and regression tasks, compatible with other KD methods, and insensitive to the teacher and student architectures. An error bound for a student model trained in the cGAN-KD framework is derived in this work, providing a theory for why cGAN-KD is effective as well as guiding the practical implementation of cGAN-KD. Extensive experiments on CIFAR-100 and ImageNet-100 show that we can combine state of the art KD methods with the cGAN-KD framework to yield a new state of the art. Moreover, experiments on Steering Angle and UTKFace demonstrate the effectiveness of cGAN-KD in image regression tasks, where existing KD methods are inapplicable.
translated by 谷歌翻译
生成对抗网络(GAN)具有许多潜在的医学成像应用,包括数据扩展,域适应和模型解释。由于图形处理单元(GPU)的记忆力有限,因此在低分辨率的医学图像上对当前的3D GAN模型进行了训练,因此这些模型要么无法扩展到高分辨率,要么容易出现斑驳的人工制品。在这项工作中,我们提出了一种新颖的端到端GAN体系结构,可以生成高分辨率3D图像。我们通过使用训练和推理之间的不同配置来实现这一目标。在训练过程中,我们采用了层次结构,该结构同时生成图像的低分辨率版本和高分辨率图像的随机选择子量。层次设计具有两个优点:首先,对高分辨率图像训练的记忆需求在子量之间摊销。此外,将高分辨率子体积固定在单个低分辨率图像上可确保子量化之间的解剖一致性。在推断期间,我们的模型可以直接生成完整的高分辨率图像。我们还将具有类似层次结构的编码器纳入模型中,以从图像中提取特征。 3D胸CT和脑MRI的实验表明,我们的方法在图像生成中的表现优于最新技术。我们还证明了所提出的模型在数据增强和临床相关特征提取中的临床应用。
translated by 谷歌翻译
组织病理学分析是对癌前病变诊断的本金标准。从数字图像自动组织病理学分类的目标需要监督培训,这需要大量的专家注释,这可能是昂贵且耗时的收集。同时,精确分类从全幻灯片裁剪的图像斑块对于基于标准滑动窗口的组织病理学幻灯片分类方法是必不可少的。为了减轻这些问题,我们提出了一个精心设计的条件GaN模型,即hostogan,用于在类标签上合成现实组织病理学图像补丁。我们还研究了一种新颖的合成增强框架,可选择地添加由我们提出的HADOGAN生成的新的合成图像补丁,而不是直接扩展与合成图像的训练集。通过基于其指定标签的置信度和实际标记图像的特征相似性选择合成图像,我们的框架为合成增强提供了质量保证。我们的模型在两个数据集上进行评估:具有有限注释的宫颈组织病理学图像数据集,以及具有转移性癌症的淋巴结组织病理学图像的另一个数据集。在这里,我们表明利用具有选择性增强的组织产生的图像导致对宫颈组织病理学和转移性癌症数据集分别的分类性能(分别为6.7%和2.8%)的显着和一致性。
translated by 谷歌翻译
已知大型预训练的生成模型偶尔提供出于各种原因可能不希望的样品。减轻这种情况的标准方法是以不同的方式重新培养模型。在这项工作中,我们采用了一种不同,更友好的方法,并调查了如何在训练后将模型置于模型之后,以便忘记某些样本。我们为gan提供了三种不同的算法,这些算法在描述了遗忘的样本方面有所不同。对现实世界图像数据集的广泛评估表明,我们的算法能够忘记数据,同时以全面重新训练成本的一小部分保留高生成质量。
translated by 谷歌翻译
我们提出了一种具有多个鉴别器的生成的对抗性网络,其中每个鉴别者都专门用于区分真实数据集的子集。这种方法有助于学习与底层数据分布重合的发电机,从而减轻慢性模式崩溃问题。从多项选择学习的灵感来看,我们引导每个判别者在整个数据的子集中具有专业知识,并允许发电机在没有监督训练示例和鉴别者的数量的情况下自动找到潜伏和真实数据空间之间的合理对应关系。尽管使用多种鉴别器,但骨干网络在鉴别器中共享,并且培训成本的增加最小化。我们使用多个评估指标展示了我们算法在标准数据集中的有效性。
translated by 谷歌翻译
Generative Adversarial Networks (GANs) typically suffer from overfitting when limited training data is available. To facilitate GAN training, current methods propose to use data-specific augmentation techniques. Despite the effectiveness, it is difficult for these methods to scale to practical applications. In this work, we present ScoreMix, a novel and scalable data augmentation approach for various image synthesis tasks. We first produce augmented samples using the convex combinations of the real samples. Then, we optimize the augmented samples by minimizing the norms of the data scores, i.e., the gradients of the log-density functions. This procedure enforces the augmented samples close to the data manifold. To estimate the scores, we train a deep estimation network with multi-scale score matching. For different image synthesis tasks, we train the score estimation network using different data. We do not require the tuning of the hyperparameters or modifications to the network architecture. The ScoreMix method effectively increases the diversity of data and reduces the overfitting problem. Moreover, it can be easily incorporated into existing GAN models with minor modifications. Experimental results on numerous tasks demonstrate that GAN models equipped with the ScoreMix method achieve significant improvements.
translated by 谷歌翻译
有条件的生成对抗网络(CGANs)将标准无条件GaN框架扩展到学习样本的联合数据标签分布,并已建立为能够产生高保真图像的强大生成模型。这种模型的训练挑战在于将课程信息恰当地注入到其发电机和鉴别器中。对于鉴别器,可以通过(1)直接将标签作为输入或(2)涉及辅助分类损失的标签来实现类调节。在本文中,我们表明前者直接对齐类条件的假和实际数据分布$ p(\ text {image} | \ text {class})$({\ EM数据匹配}),而后者对齐数据调节类分布$ p(\ text {class} | \ text {image})$({\ EM标签匹配})。虽然类别可分离性并不直接转化为样本质量,并且如果分类本身是本质上困难的话,如果不同类别的特征映射到同一点,则不能为发电机提供有用的指导,因此可以为同一点映射并因此变得不可分割。通过这种直觉激励,我们提出了一种双重投影GaN(P2Gan)模型,它学会在{\ EM数据匹配}和{\ EM标签匹配}之间平衡。然后,我们提出了一种改进的Cgan模型,通过辅助分类,通过最大限度地减少$ F $ -divergence,通过辅助分类直接对准假和实际条件$ p(\ text {class} | \ text {image})$。高斯(MOG)数据集的合成混合物和各种现实世界数据集的实验,包括CIFAR100,ImageNet和Vggface2,证明了我们所提出的模型的功效。
translated by 谷歌翻译
条件生成的对抗性网络(CGAN)通过将类信息纳入GaN来生成现实图像。虽然最受欢迎的CGANS是一种辅助分类器GAN,但众所周知,随着数据集中的类别的数量增加,培训acgan正在挑战。偶数还倾向于产生缺乏多样性的容易甲型样本。在本文中,我们介绍了两种治疗方法。首先,我们识别分类器中的梯度爆炸可能会导致早期训练中的不良崩溃,并将输入向量投影到单元间隔子上可以解决问题。其次,我们提出了数据到数据跨熵丢失(D2D-CE)来利用类标记的数据集中的关系信息。在这个基础上,我们提出了重新启动的辅助分类器生成对抗网络(Reacgan)。实验结果表明,Reacgan在CIFAR10,微小想象成,CUB200和Imagenet数据集上实现了最先进的生成结果。我们还验证了来自可分辨率的增强的ReacanggaN的利益,以及D2D-CE与Stylegan2架构协调。模型权重和提供代表性CGANS实现的软件包和我们纸上的所有实验都可以在https://github.com/postech-cvlab/pytorch-studiogan获得。
translated by 谷歌翻译
有条件的生成对抗网络(CGANS)在课堂条件生成任务中显示出卓越的结果。为了同时控制多个条件,CGAN需要多标签训练数据集,其中可以将多个标签分配给每个数据实例。然而,巨大的注释成本限制了在现实世界中多标签数据集的可访问性。因此,我们探索称为单个正设置的实用设置,其中每个数据实例仅由一个没有明确的负标签的一个正标记。为了在单个正面设置中生成多标签数据,我们提出了一种基于马尔可夫链蒙特卡洛方法的新型抽样方法,称为单一标记(S2M)采样。作为一种广泛适用的“附加”方法,我们提出的S2M采样使现有的无条件和有条件的gans能够以最小的注释成本绘制高质量的多标签数据。在真实图像数据集上进行的广泛实验可以验证我们方法的有效性和正确性,即使与经过完全注释的数据集训练的模型相比。
translated by 谷歌翻译
生成对抗网络(GAN)是最受欢迎的图像生成模型,在各种计算机视觉任务上取得了显着进度。但是,训练不稳定仍然是所有基于GAN的算法的开放问题之一。已经提出了许多方法来稳定gan的训练,其重点分别放在损失功能,正则化和归一化技术,训练算法和模型体系结构上。与上述方法不同,在本文中,提出了有关稳定gan训练的新观点。发现有时发电机产生的图像在训练过程中像歧视者的对抗示例一样,这可能是导致gan不稳定训练的原因的一部分。有了这一发现,我们提出了直接的对抗训练(DAT)方法来稳定gan的训练过程。此外,我们证明DAT方法能够适应歧视器的Lipschitz常数。 DAT的高级性能在多个损失功能,网络体系结构,超参数和数据集上进行了验证。具体而言,基于SSGAN的CIFAR-100无条件生成,DAT在CIFAR-100的无条件生成上实现了11.5%的FID,基于SSGAN的STL-10无条件生成的FID和基于SSGAN的LSUN卧室无条件生成的13.2%FID。代码将在https://github.com/iceli1007/dat-gan上找到
translated by 谷歌翻译
The performance of generative adversarial networks (GANs) heavily deteriorates given a limited amount of training data. This is mainly because the discriminator is memorizing the exact training set. To combat it, we propose Differentiable Augmentation (DiffAugment), a simple method that improves the data efficiency of GANs by imposing various types of differentiable augmentations on both real and fake samples. Previous attempts to directly augment the training data manipulate the distribution of real images, yielding little benefit; DiffAugment enables us to adopt the differentiable augmentation for the generated samples, effectively stabilizes training, and leads to better convergence. Experiments demonstrate consistent gains of our method over a variety of GAN architectures and loss functions for both unconditional and class-conditional generation. With DiffAugment, we achieve a state-of-the-art FID of 6.80 with an IS of 100.8 on ImageNet 128×128 and 2-4× reductions of FID given 1,000 images on FFHQ and LSUN. Furthermore, with only 20% training data, we can match the top performance on CIFAR-10 and CIFAR-100. Finally, our method can generate high-fidelity images using only 100 images without pre-training, while being on par with existing transfer learning algorithms. Code is available at https://github.com/mit-han-lab/data-efficient-gans.
translated by 谷歌翻译
尽管具有生成对抗网络(GAN)的图像到图像(I2I)翻译的显着进步,但使用单对生成器和歧视器将图像有效地转换为多个目标域中的一组不同图像仍然具有挑战性。现有的I2i翻译方法采用多个针对不同域的特定于域的内容编码,其中每个特定于域的内容编码器仅经过来自同一域的图像的训练。然而,我们认为应从所有域之间的图像中学到内容(域变相)特征。因此,现有方案的每个特定于域的内容编码器都无法有效提取域不变特征。为了解决这个问题,我们提出了一个灵活而通用的Sologan模型,用于在多个域之间具有未配对数据的多模式I2I翻译。与现有方法相反,Solgan算法使用具有附加辅助分类器的单个投影鉴别器,并为所有域共享编码器和生成器。因此,可以使用来自所有域的图像有效地训练Solgan,从而可以有效提取域 - 不变性内容表示。在多个数据集中,针对多个同行和sologan的变体的定性和定量结果证明了该方法的优点,尤其是对于挑战i2i翻译数据集的挑战,即涉及极端形状变化的数据集或在翻译后保持复杂的背景,需要保持复杂的背景。此外,我们通过消融研究证明了Sogan中每个成分的贡献。
translated by 谷歌翻译
深尾学习旨在培训有用的深层网络,以实用现实世界中的不平衡分布,其中大多数尾巴类别的标签都与一些样本相关联。有大量的工作来训练判别模型,以进行长尾分布的视觉识别。相比之下,我们旨在训练有条件的生成对抗网络,这是一类长尾分布的图像生成模型。我们发现,类似于识别图像产生的最新方法类似,也遭受了尾部类别的性能降解。性能降解主要是由于尾部类别的类别模式塌陷,我们观察到与调节参数矩阵的光谱爆炸相关。我们提出了一种新型的组光谱正规剂(GSR),以防止光谱爆炸减轻模式崩溃,从而导致尾巴类别的形象产生多样化和合理的图像产生。我们发现GSR有效地与现有的增强和正则化技术结合在一起,从而导致长尾数据上的最新图像生成性能。广泛的实验证明了我们的常规器在不同程度不平衡的长尾数据集上的功效。
translated by 谷歌翻译
生成的对抗网络(GANS)产生高质量的图像,但致力于训练。它们需要仔细正常化,大量计算和昂贵的超参数扫描。我们通过将生成和真实样本投影到固定的预级特征空间中,在这些问题上进行了重要的头路。发现鉴别者无法充分利用来自预押模型的更深层次的特征,我们提出了更有效的策略,可以在渠道和分辨率中混合特征。我们预计的GaN提高了图像质量,样品效率和收敛速度。它与最多一个百万像素的分辨率进一步兼容,并在二十二个基准数据集上推进最先进的FR \'Echet Inception距离(FID)。重要的是,预计的GAN符合先前最低的FID速度快40倍,鉴于相同的计算资源,将壁钟时间从5天切割到不到3小时。
translated by 谷歌翻译
生成的对抗网络(GaN)中的发电机以粗到精细的方式学习图像生成,其中早期层学习图像的整体结构和后者细化细节。要播放粗略信息,最近的作品通常通过堆叠多个残差块来构建其发电机。虽然残余块可以产生高质量的图像以及稳定地训练,但它经常阻碍网络中的信息流。为了减轻这个问题,本简要介绍了一种新的发电机架构,通过组合通过两个不同的分支获得的特征来产生图像:主和辅助分支。主分支的目标是通过通过多个剩余块来产生图像,而辅助分支是将早期层中的粗略信息传送到稍后的块。要成功结合主和辅助分支机构中的功能,我们还提出了一个门控功能融合模块,用于控制这些分支机构中的信息流。为了证明所提出的方法的优越性,本简要提供了使用Cifar-10,CiFar-100,Lsun,Celeba-HQ,AFHQ和Tiny-ImageNet的各种标准数据集提供了广泛的实验。此外,我们进行了各种消融研究,以证明所提出的方法的泛化能力。定量评估证明,该方法在成立得分(IS)和FRECHET成立距离(FID)方面表现出令人印象深刻的GAN性能。例如,该方法可以分别提高FID,并分别在35.13至25.00和20.23至25.57之间的微小图像数据集上的分数。
translated by 谷歌翻译
Mode collapse is still a major unsolved problem in generative adversarial networks. In this work, we analyze the causes of mode collapse from a new perspective. Due to the nonuniform sampling in the training process, some sub-distributions can be missed while sampling data. Therefore, the GAN objective can reach the minimum when the generated distribution is not the same as the real one. To alleviate the problem, we propose a global distribution fitting (GDF) method by a penalty term to constrain generated data distribution. On the basis of not changing the global minimum of the GAN objective, GDF will make it harder to reach the minimum value when the generated distribution is not the same as the real one. Furthermore, we also propose a local distribution fitting (LDF) method to cope with the situation that the real distribution is unknown. Experiments on several benchmarks demonstrate the effectiveness and competitive performance of GDF and LDF.
translated by 谷歌翻译
我们研究了GaN调理问题,其目标是使用标记数据将普雷雷尼的无条件GaN转换为条件GaN。我们首先识别并分析这一问题的三种方法 - 从头开始​​,微调和输入重新编程的条件GaN培训。我们的分析表明,当标记数据的数量很小时,输入重新编程执行最佳。通过稀缺标记数据的现实世界情景,我们专注于输入重编程方法,并仔细分析现有算法。在识别出先前输入重新编程方法的一些关键问题之后,我们提出了一种名为INREP +的新算法。我们的算法INREP +解决了现有问题,具有可逆性神经网络的新颖用途和正面未标记(PU)学习。通过广泛的实验,我们表明Inrep +优于所有现有方法,特别是当标签信息稀缺,嘈杂和/或不平衡时。例如,对于用1%标记数据调节CiFar10 GaN的任务,Inrep +实现了82.13的平均峰值,而第二个最佳方法达到114.51。
translated by 谷歌翻译
本文提出了一种新颖的卷积层,称为扰动卷积(PCONV),该层侧重于同时实现两个目标:改善生成的对抗网络(GaN)性能并减轻判断者将所有图像从给定数据集记住的记忆问题,因为培训进步。在PCONV中,通过在执行卷积操作之前随机扰乱输入张量来产生扰动特征。这种方法很简单,但令人惊讶地有效。首先,为了产生类似的输出,即使使用扰动的张量,鉴别器中的每层也应该学习具有小本地嘴唇尖端值的鲁棒特征。其次,由于输入张量在培训过程中随机扰乱了神经网络中的辍学时,可以减轻记忆问题。为了展示所提出的方法的泛化能力,我们对各种丢失函数和数据集进行了广泛的实验,包括CIFAR-10,Celeba,Celeba-HQ,LSUN和微型想象成。定量评估表明,在FRECHET成立距离(FID)方面,PCONV有效地提高了GaN和条件GaN的性能。
translated by 谷歌翻译