Nowadays, due to the widespread use of smartphones in everyday life and the improvement of computational capabilities of these devices, many complex tasks can now be deployed on them. Concerning the need for continuous monitoring of vital signs, especially for the elderly or those with certain types of diseases, the development of algorithms that can estimate vital signs using smartphones has attracted researchers worldwide. Such algorithms estimate vital signs (heart rate and oxygen saturation level) by processing an input PPG signal. These methods often apply multiple pre-processing steps to the input signal before the prediction step. This can increase the computational complexity of these methods, meaning only a limited number of mobile devices can run them. Furthermore, multiple pre-processing steps also require the design of a couple of hand-crafted stages to obtain an optimal result. This research proposes a novel end-to-end solution to mobile-based vital sign estimation by deep learning. The proposed method does not require any pre-processing. Due to the use of fully convolutional architecture, the parameter count of our proposed model is, on average, a quarter of the ordinary architectures that use fully-connected layers as the prediction heads. As a result, the proposed model has less over-fitting chance and computational complexity. A public dataset for vital sign estimation, including 62 videos collected from 35 men and 27 women, is also provided. The experimental results demonstrate state-of-the-art estimation accuracy.
translated by 谷歌翻译
远程光插图学(RPPG)是一种快速,有效,廉价和方便的方法,用于收集生物识别数据,因为它可以使用面部视频来估算生命体征。事实证明,远程非接触式医疗服务供应在COVID-19大流行期间是可怕的必要性。我们提出了一个端到端框架,以根据用户的视频中的RPPG方法来衡量人们的生命体征,包括心率(HR),心率变异性(HRV),氧饱和度(SPO2)和血压(BP)(BP)(BP)用智能手机相机捕获的脸。我们以实时的基于深度学习的神经网络模型来提取面部标志。通过使用预测的面部标志来提取多个称为利益区域(ROI)的面部斑块(ROI)。应用了几个过滤器,以减少称为血量脉冲(BVP)信号的提取的心脏信号中ROI的噪声。我们使用两个公共RPPG数据集培训和验证了机器学习模型,即Tokyotech RPPG和脉搏率检测(PURE)数据集,我们的模型在其上实现了以下平均绝对错误(MAE):a),HR,1.73和3.95 BEATS- beats-beats-beats-beats-beats-beats-beats-beats-beats-beats-beats-beats-beats-beats-beats-beats-s-s-s-s-s-y-peats-beats-beats-beats-ship-s-s-s-in-chin-p-in-in-in-in-in-c--in-in-c-le-in-in- -t一下制。每分钟(bpm),b)分别为HRV,分别为18.55和25.03 ms,c)对于SPO2,纯数据集上的MAE为1.64。我们在现实生活环境中验证了端到端的RPPG框架,修订,从而创建了视频HR数据集。我们的人力资源估计模型在此数据集上达到了2.49 bpm的MAE。由于没有面对视频的BP测量不存在公开可用的RPPG数据集,因此我们使用了带有指标传感器信号的数据集来训练我们的模型,还创建了我们自己的视频数据集Video-BP。在我们的视频BP数据集中,我们的BP估计模型的收缩压(SBP)达到6.7 mmHg,舒张压(DBP)的MAE为9.6 mmHg。
translated by 谷歌翻译
呼吸率(RR)是重要的生物标志物,因为RR变化可以反映严重的医学事件,例如心脏病,肺部疾病和睡眠障碍。但是,不幸的是,标准手动RR计数容易出现人为错误,不能连续执行。这项研究提出了一种连续估计RR,RRWAVENET的方法。该方法是一种紧凑的端到端深度学习模型,不需要特征工程,可以将低成本的原始光摄影学(PPG)用作输入信号。对RRWAVENET进行了独立于主题的测试,并与三个数据集(BIDMC,Capnobase和Wesad)中的基线进行了比较,并使用三个窗口尺寸(16、32和64秒)进行了比较。 RRWAVENET优于最佳窗口大小为1.66 \ pm 1.01、1.59 \ pm 1.08的最佳绝对错误的最新方法,每个数据集每分钟每分钟呼吸0.96。在远程监视设置(例如在WESAD数据集中),我们将传输学习应用于其他两个ICU数据集,将MAE降低到1.52 \ pm每分钟0.50呼吸,显示此模型可以准确且实用的RR对负担得起的可穿戴设备进行准确估算。我们的研究表明,在远程医疗和家里,远程RR监测的可行性。
translated by 谷歌翻译
血压(BP)是心血管疾病和中风最有影响力的生物标志物之一;因此,需要定期监测以诊断和预防医疗并发症的任何出现。目前携带的携带BP监测的无齿状方法,虽然是非侵入性和不引人注目的,涉及围绕指尖光肌谱(PPG)信号的显式特征工程。为了规避这一点,我们提出了一种端到端的深度学习解决方案,BP-Net,它使用PPG波形来估计通过中间连续动脉BP来估计收缩压BP(SBP),平均压力(MAP)和舒张压BP(DBP) (ABP)波形。根据英国高血压协会(BHS)标准的条款,BP-Net为SBP估计实现了DBP和地图估计和B级的A级。 BP-Net还满足了医疗仪器(AAMI)标准的推进和地图估计,分别实现了5.16mmHg和2.89mmHg的平均误差(MAE),分别用于SBP和DBP。此外,我们通过在Raspberry PI 4设备上部署BP-Net来建立我们的方法的无处不在的潜力,并为我们的模型实现4.25毫秒的推理时间来将PPG波形转换为ABP波形。
translated by 谷歌翻译
With the increase in health consciousness, noninvasive body monitoring has aroused interest among researchers. As one of the most important pieces of physiological information, researchers have remotely estimated the heart rate (HR) from facial videos in recent years. Although progress has been made over the past few years, there are still some limitations, like the processing time increasing with accuracy and the lack of comprehensive and challenging datasets for use and comparison. Recently, it was shown that HR information can be extracted from facial videos by spatial decomposition and temporal filtering. Inspired by this, a new framework is introduced in this paper to remotely estimate the HR under realistic conditions by combining spatial and temporal filtering and a convolutional neural network. Our proposed approach shows better performance compared with the benchmark on the MMSE-HR dataset in terms of both the average HR estimation and short-time HR estimation. High consistency in short-time HR estimation is observed between our method and the ground truth.
translated by 谷歌翻译
本文的重点是概念证明,机器学习(ML)管道,该管道从低功率边缘设备上获取的压力传感器数据中提取心率。 ML管道包括一个UPS采样器神经网络,信号质量分类器以及优化的1D横向扭转神经网络,以高效且准确的心率估计。这些型号的设计使管道小于40 kb。此外,开发了由UPS采样器和分类器组成的杂种管道,然后开发了峰值检测算法。管道部署在ESP32边缘设备上,并针对信号处理进行基准测试,以确定能量使用和推理时间。结果表明,与传统算法相比,提出的ML和杂种管道将能量和时间减少82%和28%。 ML管道的主要权衡是准确性,平均绝对误差(MAE)为3.28,而混合动力车和信号处理管道为2.39和1.17。因此,ML模型显示出在能源和计算约束设备中部署的希望。此外,ML管道的较低采样率和计算要求可以使自定义硬件解决方案降低可穿戴设备的成本和能源需求。
translated by 谷歌翻译
基于远程光摄氏学的心率估计在几种特定情况下(例如健康监测和疲劳检测)起着重要作用。现有良好的方法致力于将多个重叠视频剪辑的预测HR平均作为30秒面部视频的最终结果。尽管这些具有数百层和数千个渠道的方法是高度准确且健壮的,但它们需要巨大的计算预算和30秒的等待时间,这极大地限制了算法的应用来扩展。在这些CicumStacnces下,我们提出了一个轻巧的快速脉冲模拟网络(LFPS-NET),在非常有限的计算和时间预算中追求最佳准确性,重点关注通用的移动平台,例如智能手机。为了抑制噪声组件并在短时间内获得稳定的脉冲,我们设计了多频模态信号融合机制,该机制利用了时频域分析理论,以将多模式信息与复杂信号分开。它有助于继续进行网络,而无需添加任何参数,可以更轻松地学习有效的热门。此外,我们设计了一个过采样培训策略,以解决由数据集的分布不平衡引起的问题。对于30秒的面部视频,我们提出的方法在大多数评估指标上取得了最佳结果,以估计心率或心率变异性与最佳论文相比。提出的方法仍然可以使用短时(〜15秒)的主体视频获得非常具竞争力的结果。
translated by 谷歌翻译
心电图(ECG)是用于监测心脏电信号和评估其功能的最常见和常规诊断工具。人心脏可能患有多种疾病,包括心律不齐。心律不齐是一种不规则的心律,在严重的情况下会导致心脏中风,可以通过ECG记录诊断。由于早期发现心律不齐非常重要,因此在过去的几十年中,计算机化和自动化的分类以及这些异常心脏信号的识别引起了很多关注。方法:本文引入了一种轻度的深度学习方法,以高精度检测8种不同的心律不齐和正常节奏。为了利用深度学习方法,将重新采样和基线徘徊清除技术应用于ECG信号。在这项研究中,将500个样本ECG段用作模型输入。节奏分类是通过11层网络以端到端方式完成的,而无需手工制作的手动功能提取。结果:为了评估提出的技术,从两个Physionet数据库,MIT-BIH心律失常数据库和长期AF数据库中选择了ECG信号。基于卷积神经网络(CNN)和长期记忆(LSTM)的组合,提出的深度学习框架比大多数最先进的方法显示出令人鼓舞的结果。所提出的方法达到98.24%的平均诊断准确性。结论:成功开发和测试了使用多种心电图信号的心律失常分类的训练有素的模型。意义:由于本工作使用具有高诊断精度的光分类技术与其他值得注意的方法相比,因此可以在Holter Monitor设备中成功实施以进行心律失常检测。
translated by 谷歌翻译
心血管疾病是世界各地最常见的死亡原因。为了检测和治疗心脏相关的疾病,需要连续血压(BP)监测以及许多其他参数。为此目的开发了几种侵入性和非侵入性方法。用于持续监测BP的医院中使用的大多数现有方法是侵入性的。相反,基于袖带的BP监测方法,可以预测收缩压(SBP)和舒张压(DBP),不能用于连续监测。几项研究试图从非侵​​入性可收集信号(例如光学肌谱(PPG)和心电图(ECG))预测BP,其可用于连续监测。在这项研究中,我们探讨了自动化器在PPG和ECG信号中预测BP的适用性。在12,000岁的MIMIC-II数据集中进行了调查,发现了一个非常浅的一维AutoEncoder可以提取相关功能,以预测与最先进的SBP和DBP在非常大的数据集上的性能。从模拟-II数据集的一部分的独立测试分别为SBP和DBP提供了2.333和0.713的MAE。在40个主题的外部数据集上,模型在MIMIC-II数据集上培训,分别为SBP和DBP提供2.728和1.166的MAE。对于这种情况来说,结果达到了英国高血压协会(BHS)A级并超越了目前文学的研究。
translated by 谷歌翻译
Camera-based physiological measurement is a growing field with neural models providing state-the-art-performance. Prior research have explored various "end-to-end" models; however these methods still require several preprocessing steps. These additional operations are often non-trivial to implement making replication and deployment difficult and can even have a higher computational budget than the "core" network itself. In this paper, we propose two novel and efficient neural models for camera-based physiological measurement called EfficientPhys that remove the need for face detection, segmentation, normalization, color space transformation or any other preprocessing steps. Using an input of raw video frames, our models achieve strong performance on three public datasets. We show that this is the case whether using a transformer or convolutional backbone. We further evaluate the latency of the proposed networks and show that our most light weight network also achieves a 33% improvement in efficiency.
translated by 谷歌翻译
基于相机的非接触式光电子溶血性描绘是指一组流行的非接触生理测量技术。目前的最先进的神经模型通常以伴随金标准生理测量的视频以监督方式培训。但是,它们通常概括域名差别示例(即,与培训集中的视频不同)。个性化模型可以帮助提高型号的概括性,但许多个性化技术仍然需要一些金标准数据。为了帮助缓解这一依赖性,在本文中,我们展示了一种名为Mobilememon的新型移动感应系统,该系统是第一个移动个性化远程生理传感系统,它利用智能手机上的前后相机,为培训产生高质量的自我监督标签个性化非接触式相机的PPG模型。为了评估MobilemeLephys的稳健性,我们使用39名参与者进行了一个用户学习,他们在不同的移动设备下完成了一组任务,照明条件/强度,运动任务和皮肤类型。我们的研究结果表明,Mobilephys显着优于最先进的设备监督培训和几次拍摄适应方法。通过广泛的用户研究,我们进一步检查了Mobilephys如何在复杂的真实环境中执行。我们设想,从我们所提出的双摄像机移动传感系统产生的校准或基于相机的非接触式PPG模型将为智能镜,健身和移动健康应用等许多未来应用打开门。
translated by 谷歌翻译
可穿戴设备和医疗器互联网(IOMT)的最新发展允许实时监控和记录心电图(ECG)信号。然而,由于能量和内存约束,对ECG信号的连续监测在低功耗可穿戴设备中具有挑战性。因此,在本文中,我们提出了一种新颖和节能的方法,用于连续监测低功耗可穿戴设备的心脏。所提出的方法由三个不同的层组成:1)噪声/伪像检测层,以级别ECG信号的质量; 2)正常/异常拍摄分类层以检测心电图信号中的异常,3)异常搏动分类层以检测来自ECG信号的疾病。此外,分布式多输出卷积神经网络(CNN)架构用于降低边缘/云之间的能量消耗和等待时间。我们的方法论在众所周知的MIT-BIH心律失常数据集上达到了99.2%的准确性。 Real硬件的评估表明,我们的方法是适用于具有32KB最小RAM的设备。此外,与最先进的工作相比,所提出的方法可以获得7美元的能效。
translated by 谷歌翻译
目的:本文侧重于开发鲁棒和准确的加工解决方案,用于连续和较低的血压(BP)监测。在这方面,提出了一种基于深入的基于深度学习的框架,用于计算收缩和舒张BP上的低延迟,连续和无校准的上限和下界。方法:称为BP-Net,所提出的框架是一种新型卷积架构,可提供更长的有效内存,同时实现偶然拨号卷积和残留连接的卓越性能。利用深度学习的实际潜力在提取内在特征(深度特征)并增强长期稳健性,BP-Net使用原始的心电图(ECG)和光电觉体图(PPG)信号而无需提取任何形式的手工制作功能在现有解决方案中很常见。结果:通过利用最近文献中使用的数据集未统一和正确定义的事实,基准数据集由来自PhysoioNet获得的模拟I和MIMIC-III数据库构建。所提出的BP-Net是基于该基准数据集进行评估,展示了有希望的性能并显示出优异的普遍能力。结论:提出的BP-NET架构比规范复发网络更准确,增强了BP估计任务的长期鲁棒性。意义:建议的BP-NET架构解决了现有的BP估计解决方案的关键缺点,即,严重依赖于提取手工制作的特征,例如脉冲到达时间(PAT),以及;缺乏稳健性。最后,构造的BP-Net DataSet提供了一个统一的基础,用于评估和比较基于深度学习的BP估计算法。
translated by 谷歌翻译
睡眠是一种基本的生理过程,对于维持健康的身心至关重要。临床睡眠监测的黄金标准是多核桃摄影(PSG),基于哪个睡眠可以分为五个阶段,包括尾脉冲睡眠(REM睡眠)/非REM睡眠1(N1)/非REM睡眠2 (n2)/非REM睡眠3(n3)。然而,PSG昂贵,繁重,不适合日常使用。对于长期睡眠监测,无处不在的感测可以是解决方案。最近,心脏和运动感测在分类三阶段睡眠方面变得流行,因为两种方式都可以从研究级或消费者级设备中获得(例如,Apple Watch)。但是,为最大准确性融合数据的最佳仍然是一个打开的问题。在这项工作中,我们综合地研究了深度学习(DL)的高级融合技术,包括三种融合策略,三个融合方法以及三级睡眠分类,基于两个公共数据集。实验结果表明,通过融合心脏/运动传感方式可以可靠地分类三阶段睡眠,这可能成为在睡眠中进行大规模睡眠阶段评估研究或长期自动跟踪的实用工具。为了加快普遍存在/可穿戴计算社区的睡眠研究的进展,我们制作了该项目开源,可以在:https://github.com/bzhai/ubi-sleepnet找到代码。
translated by 谷歌翻译
能够可靠地估计来自视频的生理信号是低成本,临床前健康监测的强大工具。在这项工作中,我们提出了一种新的远程光学仪器描绘(RPPG)的新方法 - 从人脸或皮肤的观察结果测量血液体积的变化。类似于RPPG的当前最先进的方法,我们应用神经网络,以便在滋扰图像变异的不变性中学习深度表示。与此类方法相比,我们采用了一个完全自我监督的培训方法,这毫无依赖于昂贵的地面真理生理培训数据。我们所提出的方法在频率和时间光滑的频率和兴趣信号的时间平滑之前使用对比学习。我们在四个RPPG数据集中评估我们的方法,显示与最近监督的深度学习方法相比,可以实现可比或更好的结果,但不使用任何注释。此外,我们还将学习的显着重采样模块纳入了我们无监督的方法和监督基线。我们表明,通过允许模型来了解输入图像的位置,我们可以减少手工工程功能的需要,同时为模型的行为和可能的故障模式提供一些可解释性。我们释放守则以获得我们完整的培训和评估管道,以鼓励在这种激动人心的新方向上的可重复进展。
translated by 谷歌翻译
新生儿重症监护病房(NICU)中的早产婴儿必须不断监测其心脏健康。常规的监测方法是基于接触的,使新生儿容易受到各种医院感染。基于视频的监视方法为非接触式测量开辟了潜在的途径。这项工作提供了一条管道,用于远程对NICU设置视频的心肺信号进行远程估算。我们提出了一个端到端深度学习(DL)模型,该模型集成了一种基于基于学习的方法来生成替代地面真理(SGT)标签以进行监督,从而避免了直接依赖对真实地面真相标签的依赖。我们进行了扩展的定性和定量分析,以检查我们提出的基于DL的管道的功效,并在估计的心率中达到了总平均平均绝对误差为4.6 BEATS(BPM)(BPM)和均方根均方根误差为6.2 bpm。
translated by 谷歌翻译
With the increasing popularity of telehealth, it becomes critical to ensure that basic physiological signals can be monitored accurately at home, with minimal patient overhead. In this paper, we propose a contactless approach for monitoring patients' blood oxygen at home, simply by analyzing the radio signals in the room, without any wearable devices. We extract the patients' respiration from the radio signals that bounce off their bodies and devise a novel neural network that infers a patient's oxygen estimates from their breathing signal. Our model, called \emph{Gated BERT-UNet}, is designed to adapt to the patient's medical indices (e.g., gender, sleep stages). It has multiple predictive heads and selects the most suitable head via a gate controlled by the person's physiological indices. Extensive empirical results show that our model achieves high accuracy on both medical and radio datasets.
translated by 谷歌翻译
血压(BP)监测对于日常医疗保健至关重要,尤其是对于心血管疾病。但是,BP值主要是通过接触传感方法获得的,这是不方便且不友好的BP测量。因此,我们提出了一个有效的端到端网络,以估算面部视频中的BP值,以实现日常生活中的远程BP测量。在这项研究中,我们首先得出了短期(〜15s)面部视频的时空图。根据时空图,我们随后通过设计的血压分类器回归了BP范围,并同时通过每个BP范围内的血压计算器来计算特定值。此外,我们还制定了一种创新的过采样培训策略,以解决不平衡的数据分配问题。最后,我们在私有数据集ASPD上培训了拟议的网络,并在流行的数据集MMSE-HR上对其进行了测试。结果,拟议的网络实现了收缩压和舒张压测量的最先进的MAE,为12.35 mmHg和9.5 mmHg,这比最近的工作要好。它得出的结论是,在现实世界中,提出的方法对于基于摄像头的BP监测具有巨大潜力。
translated by 谷歌翻译
呼吸声分类中的问题已在去年的临床科学家和医学研究员团体中获得了良好的关注,以诊断Covid-19疾病。迄今为止,各种模型的人工智能(AI)进入了现实世界,从人类生成的声音等人生成的声音中检测了Covid-19疾病,例如语音/言语,咳嗽和呼吸。实现卷积神经网络(CNN)模型,用于解决基于人工智能(AI)的机器上的许多真实世界问题。在这种情况下,建议并实施一个维度(1D)CNN,以诊断Covid-19的呼吸系统疾病,例如语音,咳嗽和呼吸。应用基于增强的机制来改善Covid-19声音数据集的预处理性能,并使用1D卷积网络自动化Covid-19疾病诊断。此外,使用DDAE(数据去噪自动编码器)技术来产生诸如输入功能的深声特征,而不是采用MFCC(MEL频率跳跃系数)的标准输入,并且它更好地执行比以前的型号的准确性和性能。
translated by 谷歌翻译
随着在线医疗的激增,需要对患者生命力进行远程监测。这可以通过从面部视频中计算生命体征的远程照相学(RPPG)技术来促进。它涉及处理视频帧以获取皮肤像素,从中提取心脏数据并应用信号处理过滤器以提取血量脉冲(BVP)信号。将不同的算法应用于BVP信号以估计各种生命体征。我们实施了一个Web应用程序框架,以测量一个人的心率(HR),心率变异性(HRV),氧饱和度(SPO2),呼吸率(RR),血压(BP)和面部视频的压力。RPPG技术对照明和运动变化高度敏感。Web应用程序指导用户减少由于这些变化而减少噪音,从而产生清洁器的BVP信号。框架的准确性和鲁棒性在志愿者的帮助下得到了验证。
translated by 谷歌翻译