With the increasing popularity of telehealth, it becomes critical to ensure that basic physiological signals can be monitored accurately at home, with minimal patient overhead. In this paper, we propose a contactless approach for monitoring patients' blood oxygen at home, simply by analyzing the radio signals in the room, without any wearable devices. We extract the patients' respiration from the radio signals that bounce off their bodies and devise a novel neural network that infers a patient's oxygen estimates from their breathing signal. Our model, called \emph{Gated BERT-UNet}, is designed to adapt to the patient's medical indices (e.g., gender, sleep stages). It has multiple predictive heads and selects the most suitable head via a gate controlled by the person's physiological indices. Extensive empirical results show that our model achieves high accuracy on both medical and radio datasets.
translated by 谷歌翻译
基于相机的非接触式光电子溶血性描绘是指一组流行的非接触生理测量技术。目前的最先进的神经模型通常以伴随金标准生理测量的视频以监督方式培训。但是,它们通常概括域名差别示例(即,与培训集中的视频不同)。个性化模型可以帮助提高型号的概括性,但许多个性化技术仍然需要一些金标准数据。为了帮助缓解这一依赖性,在本文中,我们展示了一种名为Mobilememon的新型移动感应系统,该系统是第一个移动个性化远程生理传感系统,它利用智能手机上的前后相机,为培训产生高质量的自我监督标签个性化非接触式相机的PPG模型。为了评估MobilemeLephys的稳健性,我们使用39名参与者进行了一个用户学习,他们在不同的移动设备下完成了一组任务,照明条件/强度,运动任务和皮肤类型。我们的研究结果表明,Mobilephys显着优于最先进的设备监督培训和几次拍摄适应方法。通过广泛的用户研究,我们进一步检查了Mobilephys如何在复杂的真实环境中执行。我们设想,从我们所提出的双摄像机移动传感系统产生的校准或基于相机的非接触式PPG模型将为智能镜,健身和移动健康应用等许多未来应用打开门。
translated by 谷歌翻译
对医疗保健监控的远程工具的需求从未如此明显。摄像机测量生命体征利用成像装置通过分析人体的图像来计算生理变化。建立光学,机器学习,计算机视觉和医学的进步这些技术以来的数码相机的发明以来已经显着进展。本文介绍了对生理生命体征的相机测量综合调查,描述了它们可以测量的重要标志和实现所做的计算技术。我涵盖了临床和非临床应用以及这些应用需要克服的挑战,以便从概念上推进。最后,我描述了对研究社区可用的当前资源(数据集和代码),并提供了一个全面的网页(https://cameravitals.github.io/),其中包含这些资源的链接以及其中引用的所有文件的分类列表文章。
translated by 谷歌翻译
如今,人工智能(AI)已成为临床和远程医疗保健应用程序的基本组成部分,但是最佳性能的AI系统通常太复杂了,无法自我解释。可解释的AI(XAI)技术被定义为揭示系统的预测和决策背后的推理,并且在处理敏感和个人健康数据时,它们变得更加至关重要。值得注意的是,XAI并未在不同的研究领域和数据类型中引起相同的关注,尤其是在医疗保健领域。特别是,许多临床和远程健康应用程序分别基于表格和时间序列数据,而XAI并未在这些数据类型上进行分析,而计算机视觉和自然语言处理(NLP)是参考应用程序。为了提供最适合医疗领域表格和时间序列数据的XAI方法的概述,本文提供了过去5年中文献的审查,说明了生成的解释的类型以及为评估其相关性所提供的努力和质量。具体而言,我们确定临床验证,一致性评估,客观和标准化质量评估以及以人为本的质量评估作为确保最终用户有效解释的关键特征。最后,我们强调了该领域的主要研究挑战以及现有XAI方法的局限性。
translated by 谷歌翻译
The promise of Mobile Health (mHealth) is the ability to use wearable sensors to monitor participant physiology at high frequencies during daily life to enable temporally-precise health interventions. However, a major challenge is frequent missing data. Despite a rich imputation literature, existing techniques are ineffective for the pulsative signals which comprise many mHealth applications, and a lack of available datasets has stymied progress. We address this gap with PulseImpute, the first large-scale pulsative signal imputation challenge which includes realistic mHealth missingness models, an extensive set of baselines, and clinically-relevant downstream tasks. Our baseline models include a novel transformer-based architecture designed to exploit the structure of pulsative signals. We hope that PulseImpute will enable the ML community to tackle this significant and challenging task.
translated by 谷歌翻译
Nowadays, due to the widespread use of smartphones in everyday life and the improvement of computational capabilities of these devices, many complex tasks can now be deployed on them. Concerning the need for continuous monitoring of vital signs, especially for the elderly or those with certain types of diseases, the development of algorithms that can estimate vital signs using smartphones has attracted researchers worldwide. Such algorithms estimate vital signs (heart rate and oxygen saturation level) by processing an input PPG signal. These methods often apply multiple pre-processing steps to the input signal before the prediction step. This can increase the computational complexity of these methods, meaning only a limited number of mobile devices can run them. Furthermore, multiple pre-processing steps also require the design of a couple of hand-crafted stages to obtain an optimal result. This research proposes a novel end-to-end solution to mobile-based vital sign estimation by deep learning. The proposed method does not require any pre-processing. Due to the use of fully convolutional architecture, the parameter count of our proposed model is, on average, a quarter of the ordinary architectures that use fully-connected layers as the prediction heads. As a result, the proposed model has less over-fitting chance and computational complexity. A public dataset for vital sign estimation, including 62 videos collected from 35 men and 27 women, is also provided. The experimental results demonstrate state-of-the-art estimation accuracy.
translated by 谷歌翻译
呼吸声分类中的问题已在去年的临床科学家和医学研究员团体中获得了良好的关注,以诊断Covid-19疾病。迄今为止,各种模型的人工智能(AI)进入了现实世界,从人类生成的声音等人生成的声音中检测了Covid-19疾病,例如语音/言语,咳嗽和呼吸。实现卷积神经网络(CNN)模型,用于解决基于人工智能(AI)的机器上的许多真实世界问题。在这种情况下,建议并实施一个维度(1D)CNN,以诊断Covid-19的呼吸系统疾病,例如语音,咳嗽和呼吸。应用基于增强的机制来改善Covid-19声音数据集的预处理性能,并使用1D卷积网络自动化Covid-19疾病诊断。此外,使用DDAE(数据去噪自动编码器)技术来产生诸如输入功能的深声特征,而不是采用MFCC(MEL频率跳跃系数)的标准输入,并且它更好地执行比以前的型号的准确性和性能。
translated by 谷歌翻译
心血管疾病是世界各地最常见的死亡原因。为了检测和治疗心脏相关的疾病,需要连续血压(BP)监测以及许多其他参数。为此目的开发了几种侵入性和非侵入性方法。用于持续监测BP的医院中使用的大多数现有方法是侵入性的。相反,基于袖带的BP监测方法,可以预测收缩压(SBP)和舒张压(DBP),不能用于连续监测。几项研究试图从非侵​​入性可收集信号(例如光学肌谱(PPG)和心电图(ECG))预测BP,其可用于连续监测。在这项研究中,我们探讨了自动化器在PPG和ECG信号中预测BP的适用性。在12,000岁的MIMIC-II数据集中进行了调查,发现了一个非常浅的一维AutoEncoder可以提取相关功能,以预测与最先进的SBP和DBP在非常大的数据集上的性能。从模拟-II数据集的一部分的独立测试分别为SBP和DBP提供了2.333和0.713的MAE。在40个主题的外部数据集上,模型在MIMIC-II数据集上培训,分别为SBP和DBP提供2.728和1.166的MAE。对于这种情况来说,结果达到了英国高血压协会(BHS)A级并超越了目前文学的研究。
translated by 谷歌翻译
COVID-19大流行对全球医疗保健系统造成了沉重的负担,并造成了巨大的社会破坏和经济损失。已经提出了许多深度学习模型来执行临床预测任务,例如使用电子健康记录(EHR)数据在重症监护病房中为Covid-19患者的死亡率预测。尽管在某些临床应用中取得了最初的成功,但目前缺乏基准测试结果来获得公平的比较,因此我们可以选择最佳模型以供临床使用。此外,传统预测任务的制定与重症监护现实世界的临床实践之间存在差异。为了填补这些空白,我们提出了两项​​临床预测任务,特定于结局的预测和重症监护病房中的COVID-19患者的早期死亡率预测。这两个任务是根据幼稚的停车时间和死亡率预测任务的改编,以适应COVID-19患者的临床实践。我们提出了公平,详细的开源数据预处管道,并评估了两项任务的17个最先进的预测模型,包括5个机器学习模型,6种基本的深度学习模型和6种专门为EHR设计的深度学习预测模型数据。我们使用来自两个现实世界Covid-19 EHR数据集的数据提供基准测试结果。这两个数据集都可以公开可用,而无需任何查询,并且可以根据要求访问一个数据集。我们为两项任务提供公平,可重复的基准测试结果。我们在在线平台上部署所有实验结果和模型。我们还允许临床医生和研究人员将其数据上传到平台上,并使用训练有素的模型快速获得预测结果。我们希望我们的努力能够进一步促进Covid-19预测建模的深度学习和机器学习研究。
translated by 谷歌翻译
睡眠是一种基本的生理过程,对于维持健康的身心至关重要。临床睡眠监测的黄金标准是多核桃摄影(PSG),基于哪个睡眠可以分为五个阶段,包括尾脉冲睡眠(REM睡眠)/非REM睡眠1(N1)/非REM睡眠2 (n2)/非REM睡眠3(n3)。然而,PSG昂贵,繁重,不适合日常使用。对于长期睡眠监测,无处不在的感测可以是解决方案。最近,心脏和运动感测在分类三阶段睡眠方面变得流行,因为两种方式都可以从研究级或消费者级设备中获得(例如,Apple Watch)。但是,为最大准确性融合数据的最佳仍然是一个打开的问题。在这项工作中,我们综合地研究了深度学习(DL)的高级融合技术,包括三种融合策略,三个融合方法以及三级睡眠分类,基于两个公共数据集。实验结果表明,通过融合心脏/运动传感方式可以可靠地分类三阶段睡眠,这可能成为在睡眠中进行大规模睡眠阶段评估研究或长期自动跟踪的实用工具。为了加快普遍存在/可穿戴计算社区的睡眠研究的进展,我们制作了该项目开源,可以在:https://github.com/bzhai/ubi-sleepnet找到代码。
translated by 谷歌翻译
Covid-19在全球范围内影响了223多个国家。迫切需要非侵入性,低成本和高度可扩展的解决方案来检测COVID-19,尤其是在PCR测试无普遍可用的低资源国家。我们的目的是开发一个深度学习模型,使用普通人群(语音录音和简短问卷)通过其个人设备自发提供的语音数据记录来识别Covid-19。这项工作的新颖性在于开发一个深度学习模型,以鉴定来自语音记录的199名患者。方法:我们使用了由893个音频样本组成的剑桥大学数据集,该数据集由4352名参与者的人群来源,这些参与者使用了COVID-19 Sounds应用程序。使用MEL光谱分析提取语音功能。根据语音数据,我们开发了深度学习分类模型,以检测阳性的Covid-19情况。这些模型包括长期术语记忆(LSTM)和卷积神经网络(CNN)。我们将它们的预测能力与基线分类模型进行了比较,即逻辑回归和支持向量机。结果:基于MEL频率CEPSTRAL系数(MFCC)功能的LSTM具有最高的精度(89%),其灵敏度和特异性分别为89%和89%,其结果通过提议的模型获得了显着改善,这表明该结果显着改善与艺术状态获得的结果相比,COVID-19诊断的预测准确性。结论:深度学习可以检测到199例患者的声音中的细微变化,并有令人鼓舞的结果。作为当前测试技术的补充,该模型可以使用简单的语音分析帮助卫生专业人员快速诊断和追踪Covid-19案例
translated by 谷歌翻译
最近应用于从密集护理单位收集的时间序列的机器学习方法的成功暴露了缺乏标准化的机器学习基准,用于开发和比较这些方法。虽然原始数据集(例如MIMIC-IV或EICU)可以在物理体上自由访问,但是选择任务和预处理的选择通常是针对每个出版物的ad-hoc,限制出版物的可比性。在这项工作中,我们的目标是通过提供覆盖大型ICU相关任务的基准来改善这种情况。使用HirID数据集,我们定义与临床医生合作开发的多个临床相关任务。此外,我们提供可重复的端到端管道,以构建数据和标签。最后,我们提供了对当前最先进的序列建模方法的深入分析,突出了这种类型数据的深度学习方法的一些限制。通过这款基准,我们希望为研究界提供合理比较的可能性。
translated by 谷歌翻译
2019年12月,一个名为Covid-19的新型病毒导致了迄今为止的巨大因果关系。与新的冠状病毒的战斗在西班牙语流感后令人振奋和恐怖。虽然前线医生和医学研究人员在控制高度典型病毒的传播方面取得了重大进展,但技术也证明了在战斗中的重要性。此外,许多医疗应用中已采用人工智能,以诊断许多疾病,甚至陷入困境的经验丰富的医生。因此,本调查纸探讨了提议的方法,可以提前援助医生和研究人员,廉价的疾病诊断方法。大多数发展中国家难以使用传统方式进行测试,但机器和深度学习可以采用显着的方式。另一方面,对不同类型的医学图像的访问已经激励了研究人员。结果,提出了一种庞大的技术数量。本文首先详细调了人工智能域中传统方法的背景知识。在此之后,我们会收集常用的数据集及其用例日期。此外,我们还显示了采用深入学习的机器学习的研究人员的百分比。因此,我们对这种情况进行了彻底的分析。最后,在研究挑战中,我们详细阐述了Covid-19研究中面临的问题,我们解决了我们的理解,以建立一个明亮健康的环境。
translated by 谷歌翻译
基于电子健康记录(EHR)的健康预测建筑模型已成为一个活跃的研究领域。 EHR患者旅程数据由患者定期的临床事件/患者访问组成。大多数现有研究的重点是建模访问之间的长期依赖性,而无需明确考虑连续访问之间的短期相关性,在这种情况下,将不规则的时间间隔(并入为辅助信息)被送入健康预测模型中以捕获患者期间的潜在渐进模式。 。我们提出了一个具有四个模块的新型深神经网络,以考虑各种变量对健康预测的贡献:i)堆叠的注意力模块在每个患者旅程中加强了临床事件中的深层语义,并产生访问嵌入,ii)短 - 术语时间关注模块模型在连续访问嵌入之间的短期相关性,同时捕获这些访问嵌入中时间间隔的影响,iii)长期时间关注模块模型的长期依赖模型,同时捕获时间间隔内的时间间隔的影响这些访问嵌入,iv),最后,耦合的注意模块适应了短期时间关注和长期时间注意模块的输出,以做出健康预测。对模拟III的实验结果表明,与现有的最新方法相比,我们的模型的预测准确性以及该方法的可解释性和鲁棒性。此外,我们发现建模短期相关性有助于局部先验的产生,从而改善了患者旅行的预测性建模。
translated by 谷歌翻译
呼吸率(RR)是重要的生物标志物,因为RR变化可以反映严重的医学事件,例如心脏病,肺部疾病和睡眠障碍。但是,不幸的是,标准手动RR计数容易出现人为错误,不能连续执行。这项研究提出了一种连续估计RR,RRWAVENET的方法。该方法是一种紧凑的端到端深度学习模型,不需要特征工程,可以将低成本的原始光摄影学(PPG)用作输入信号。对RRWAVENET进行了独立于主题的测试,并与三个数据集(BIDMC,Capnobase和Wesad)中的基线进行了比较,并使用三个窗口尺寸(16、32和64秒)进行了比较。 RRWAVENET优于最佳窗口大小为1.66 \ pm 1.01、1.59 \ pm 1.08的最佳绝对错误的最新方法,每个数据集每分钟每分钟呼吸0.96。在远程监视设置(例如在WESAD数据集中),我们将传输学习应用于其他两个ICU数据集,将MAE降低到1.52 \ pm每分钟0.50呼吸,显示此模型可以准确且实用的RR对负担得起的可穿戴设备进行准确估算。我们的研究表明,在远程医疗和家里,远程RR监测的可行性。
translated by 谷歌翻译
能够可靠地估计来自视频的生理信号是低成本,临床前健康监测的强大工具。在这项工作中,我们提出了一种新的远程光学仪器描绘(RPPG)的新方法 - 从人脸或皮肤的观察结果测量血液体积的变化。类似于RPPG的当前最先进的方法,我们应用神经网络,以便在滋扰图像变异的不变性中学习深度表示。与此类方法相比,我们采用了一个完全自我监督的培训方法,这毫无依赖于昂贵的地面真理生理培训数据。我们所提出的方法在频率和时间光滑的频率和兴趣信号的时间平滑之前使用对比学习。我们在四个RPPG数据集中评估我们的方法,显示与最近监督的深度学习方法相比,可以实现可比或更好的结果,但不使用任何注释。此外,我们还将学习的显着重采样模块纳入了我们无监督的方法和监督基线。我们表明,通过允许模型来了解输入图像的位置,我们可以减少手工工程功能的需要,同时为模型的行为和可能的故障模式提供一些可解释性。我们释放守则以获得我们完整的培训和评估管道,以鼓励在这种激动人心的新方向上的可重复进展。
translated by 谷歌翻译
Time series anomaly detection has applications in a wide range of research fields and applications, including manufacturing and healthcare. The presence of anomalies can indicate novel or unexpected events, such as production faults, system defects, or heart fluttering, and is therefore of particular interest. The large size and complex patterns of time series have led researchers to develop specialised deep learning models for detecting anomalous patterns. This survey focuses on providing structured and comprehensive state-of-the-art time series anomaly detection models through the use of deep learning. It providing a taxonomy based on the factors that divide anomaly detection models into different categories. Aside from describing the basic anomaly detection technique for each category, the advantages and limitations are also discussed. Furthermore, this study includes examples of deep anomaly detection in time series across various application domains in recent years. It finally summarises open issues in research and challenges faced while adopting deep anomaly detection models.
translated by 谷歌翻译
对医疗保健和生物医学应用的关键,呼吸监测通常在实践中使用可穿戴传感器,由于它们与人体直接接触而导致不便。因此,研究人员一直在不断寻找免费的接触替代品。尽管如此,现有的无联系设计主要需要人类受试者保持静止,在正常环境中大大限制了身体运动不可避免的日常环境中的收养。幸运的是,透射频率(RF)使能无接触感测,但通过传统过滤不可分割的运动干扰,可以在深度学习的帮助下提供蒸馏呼吸波形的潜力。为了实现这一潜力,我们在身体运动下引入了更多内容以进行细粒度的呼吸监测。更多-fi利用IR-UWB雷达来实现无接触感测,并充分利用复杂的雷达信号进行数据增强。更多-Fi的核心是一种新颖的变分编码器解码器网络;它旨在单独用以非线性方式通过身体运动调节的呼吸波形。我们具有12个受试者和66小时数据的实验表明,尽管身体运动引起的干扰,但仍然需要更准确地恢复呼吸波。我们还讨论了肺部疾病诊断的潜在应用。
translated by 谷歌翻译
远程光插图学(RPPG)是一种快速,有效,廉价和方便的方法,用于收集生物识别数据,因为它可以使用面部视频来估算生命体征。事实证明,远程非接触式医疗服务供应在COVID-19大流行期间是可怕的必要性。我们提出了一个端到端框架,以根据用户的视频中的RPPG方法来衡量人们的生命体征,包括心率(HR),心率变异性(HRV),氧饱和度(SPO2)和血压(BP)(BP)(BP)用智能手机相机捕获的脸。我们以实时的基于深度学习的神经网络模型来提取面部标志。通过使用预测的面部标志来提取多个称为利益区域(ROI)的面部斑块(ROI)。应用了几个过滤器,以减少称为血量脉冲(BVP)信号的提取的心脏信号中ROI的噪声。我们使用两个公共RPPG数据集培训和验证了机器学习模型,即Tokyotech RPPG和脉搏率检测(PURE)数据集,我们的模型在其上实现了以下平均绝对错误(MAE):a),HR,1.73和3.95 BEATS- beats-beats-beats-beats-beats-beats-beats-beats-beats-beats-beats-beats-beats-beats-beats-beats-s-s-s-s-s-y-peats-beats-beats-beats-ship-s-s-s-in-chin-p-in-in-in-in-in-c--in-in-c-le-in-in- -t一下制。每分钟(bpm),b)分别为HRV,分别为18.55和25.03 ms,c)对于SPO2,纯数据集上的MAE为1.64。我们在现实生活环境中验证了端到端的RPPG框架,修订,从而创建了视频HR数据集。我们的人力资源估计模型在此数据集上达到了2.49 bpm的MAE。由于没有面对视频的BP测量不存在公开可用的RPPG数据集,因此我们使用了带有指标传感器信号的数据集来训练我们的模型,还创建了我们自己的视频数据集Video-BP。在我们的视频BP数据集中,我们的BP估计模型的收缩压(SBP)达到6.7 mmHg,舒张压(DBP)的MAE为9.6 mmHg。
translated by 谷歌翻译
Health sensing for chronic disease management creates immense benefits for social welfare. Existing health sensing studies primarily focus on the prediction of physical chronic diseases. Depression, a widespread complication of chronic diseases, is however understudied. We draw on the medical literature to support depression prediction using motion sensor data. To connect human expertise in the decision-making, safeguard trust for this high-stake prediction, and ensure algorithm transparency, we develop an interpretable deep learning model: Temporal Prototype Network (TempPNet). TempPNet is built upon the emergent prototype learning models. To accommodate the temporal characteristic of sensor data and the progressive property of depression, TempPNet differs from existing prototype learning models in its capability of capturing the temporal progression of depression. Extensive empirical analyses using real-world motion sensor data show that TempPNet outperforms state-of-the-art benchmarks in depression prediction. Moreover, TempPNet interprets its predictions by visualizing the temporal progression of depression and its corresponding symptoms detected from sensor data. We further conduct a user study to demonstrate its superiority over the benchmarks in interpretability. This study offers an algorithmic solution for impactful social good - collaborative care of chronic diseases and depression in health sensing. Methodologically, it contributes to extant literature with a novel interpretable deep learning model for depression prediction from sensor data. Patients, doctors, and caregivers can deploy our model on mobile devices to monitor patients' depression risks in real-time. Our model's interpretability also allows human experts to participate in the decision-making by reviewing the interpretation of prediction outcomes and making informed interventions.
translated by 谷歌翻译