A reliable critic is central to on-policy actor-critic learning. But it becomes challenging to learn a reliable critic in a multi-agent sparse reward scenario due to two factors: 1) The joint action space grows exponentially with the number of agents 2) This, combined with the reward sparseness and environment noise, leads to large sample requirements for accurate learning. We show that regularising the critic with spectral normalization (SN) enables it to learn more robustly, even in multi-agent on-policy sparse reward scenarios. Our experiments show that the regularised critic is quickly able to learn from the sparse rewarding experience in the complex SMAC and RWARE domains. These findings highlight the importance of regularisation in the critic for stable learning.
translated by 谷歌翻译
Many real-world problems, such as network packet routing and the coordination of autonomous vehicles, are naturally modelled as cooperative multi-agent systems. There is a great need for new reinforcement learning methods that can efficiently learn decentralised policies for such systems. To this end, we propose a new multi-agent actor-critic method called counterfactual multi-agent (COMA) policy gradients. COMA uses a centralised critic to estimate the Q-function and decentralised actors to optimise the agents' policies. In addition, to address the challenges of multi-agent credit assignment, it uses a counterfactual baseline that marginalises out a single agent's action, while keeping the other agents' actions fixed. COMA also uses a critic representation that allows the counterfactual baseline to be computed efficiently in a single forward pass. We evaluate COMA in the testbed of StarCraft unit micromanagement, using a decentralised variant with significant partial observability. COMA significantly improves average performance over other multi-agent actorcritic methods in this setting, and the best performing agents are competitive with state-of-the-art centralised controllers that get access to the full state.
translated by 谷歌翻译
由于共同国家行动空间相对于代理人的数量,多代理强化学习(MARL)中的政策学习(MARL)是具有挑战性的。为了实现更高的可伸缩性,通过分解执行(CTDE)的集中式培训范式被MARL中的分解结构广泛采用。但是,我们观察到,即使在简单的矩阵游戏中,合作MARL中现有的CTDE算法也无法实现最佳性。为了理解这种现象,我们引入了一个具有政策分解(GPF-MAC)的广义多代理参与者批评的框架,该框架的特征是对分解的联合政策的学习,即,每个代理人的政策仅取决于其自己的观察行动历史。我们表明,最受欢迎的CTDE MARL算法是GPF-MAC的特殊实例,可能会陷入次优的联合政策中。为了解决这个问题,我们提出了一个新颖的转型框架,该框架将多代理的MDP重新制定为具有连续结构的特殊“单位代理” MDP,并且可以允许使用现成的单机械加固学习(SARL)算法来有效地学习相应的多代理任务。这种转换保留了SARL算法的最佳保证,以合作MARL。为了实例化此转换框架,我们提出了一个转换的PPO,称为T-PPO,该PPO可以在有限的多代理MDP中进行理论上执行最佳的策略学习,并在一系列合作的多代理任务上显示出明显的超出性能。
translated by 谷歌翻译
The study of decentralized learning or independent learning in cooperative multi-agent reinforcement learning has a history of decades. Recently empirical studies show that independent PPO (IPPO) can obtain good performance, close to or even better than the methods of centralized training with decentralized execution, in several benchmarks. However, decentralized actor-critic with convergence guarantee is still open. In this paper, we propose \textit{decentralized policy optimization} (DPO), a decentralized actor-critic algorithm with monotonic improvement and convergence guarantee. We derive a novel decentralized surrogate for policy optimization such that the monotonic improvement of joint policy can be guaranteed by each agent \textit{independently} optimizing the surrogate. In practice, this decentralized surrogate can be realized by two adaptive coefficients for policy optimization at each agent. Empirically, we compare DPO with IPPO in a variety of cooperative multi-agent tasks, covering discrete and continuous action spaces, and fully and partially observable environments. The results show DPO outperforms IPPO in most tasks, which can be the evidence for our theoretical results.
translated by 谷歌翻译
集中式培训(CT)是许多受欢迎的多代理增强学习(MARL)方法的基础,因为它允许代理商快速学习高性能的政策。但是,CT依靠代理人从对特定州对其他代理商的行为的一次性观察中学习。由于MARL代理商在培训期间探索和更新其政策,因此这些观察结果通常会为其他代理商的行为和预期的给定行动回报提供不良的预测。因此,CT方法患有较高的差异和容易出错的估计,从而损害了学习。除非施加了强大的分解限制,否则CT方法还遭受了复杂性爆炸性增长(例如,QMIX的单调奖励函数)。我们通过一个新的半居中的MAL框架来应对这些挑战,该框架执行政策安装的培训和分散的执行。我们的方法是嵌入式增强学习算法(PERLA),是参与者批评的MARL算法的增强工具,它利用了一种新型参数共享协议和策略嵌入方法来维持对其他代理商的行为的估计。我们的理论证明,佩拉大大降低了价值估计的差异。与各种CT方法不同,Perla无缝地采用MARL算法,它可以轻松地与代理数量缩放,而无需限制性分解假设。我们展示了Perla在基准环境中的出色经验表现和有效的缩放,包括Starcraft Micromagement II和Multi-Agent Mujoco
translated by 谷歌翻译
我们呈现协调的近端策略优化(COPPO),该算法将原始近端策略优化(PPO)扩展到多功能代理设置。关键的想法在于多个代理之间的策略更新过程中的步骤大小的协调适应。当优化理论上接地的联合目标时,我们证明了政策改进的单调性,并基于一组近似推导了简化的优化目标。然后,我们解释了Coppo中的这种目标可以在代理商之间实现动态信用分配,从而减轻了代理政策的同时更新期间的高方差问题。最后,我们证明COPPO优于几种强大的基线,并且在典型的多代理设置下,包括最新的多代理PPO方法(即MAPPO),包括合作矩阵游戏和星际争霸II微管理任务。
translated by 谷歌翻译
多智能体增强学习(Marl)为涉及多个交互代理的问题提供了一个框架。尽管与单智能案例明显相似,但多种子体问题通常仍然努力培训和分析。在这项工作中,我们提出了一种新的策略演员 - 批评算法,它将V-Trace扩展到Marl设置。我们的算法的关键优势是它在多工人设置中的高可扩展性。为此,MA-Trace利用重要的采样作为脱策校正方法,这允许分配计算,没有影响培训质量。此外,我们的算法理论上是接地 - 我们证明了一种保证收敛的定期定理。我们在星际争霸多智能课程中广泛评估算法,是多智能代理算法的标准基准。Ma-Trace在所有任务中实现了高性能,并超过了最先进的结果。
translated by 谷歌翻译
近端策略优化(PPO)是一种普遍存在的上利期内学习算法,但在多代理设置中的非政策学习算法所使用的算法明显少得多。这通常是由于认为PPO的样品效率明显低于多代理系统中的销售方法。在这项工作中,我们仔细研究了合作多代理设置中PPO的性能。我们表明,基于PPO的多代理算法在四个受欢迎的多代理测试台上取得了令人惊讶的出色表现:粒子世界环境,星际争霸多代理挑战,哈纳比挑战赛和Google Research Football,并具有最少的超参数调谐任何特定领域的算法修改或架构。重要的是,与强大的非政策方法相比,PPO通常在最终奖励和样本效率中都能取得竞争性或优越的结果。最后,通过消融研究,我们分析了对PPO的经验表现至关重要的实施和高参数因素,并就这些因素提供了具体的实用建议。我们的结果表明,在使用这些实践时,简单的基于PPO的方法在合作多代理增强学习中是强大的基线。源代码可在https://github.com/marlbenchmark/on-policy上发布。
translated by 谷歌翻译
通过集中培训和分散执行的价值功能分解是有助于解决合作多功能协商强化任务的承诺。该地区QMIX的方法之一已成为最先进的,在星际争霸II微型管理基准上实现了最佳性能。然而,已知QMIX中每个代理估计的单调混合是限制它可以表示的关节动作Q值,以及单个代理价值函数估计的全局状态信息,通常导致子优相。为此,我们呈现LSF-SAC,这是一种新颖的框架,其具有基于变分推理的信息共享机制,作为额外的状态信息,以帮助在价值函数分子中提供各个代理。我们证明,这种潜在的个人状态信息共享可以显着扩展价值函数分解的力量,而通过软演员批评设计仍然可以在LSF-SAC中保持完全分散的执行。我们在星际争霸II微型管理挑战上评估LSF-SAC,并证明它在挑战协作任务方面优于几种最先进的方法。我们进一步设定了广泛的消融研究,以定位核算其绩效改进的关键因素。我们认为,这种新的洞察力可以导致新的地方价值估算方法和变分的深度学习算法。可以在https://sites.google.com/view/sacmm处找到演示视频和实现代码。
translated by 谷歌翻译
分散的学习对合作多代理增强学习(MARL)表现出了巨大的希望。但是,非平稳性仍然是分散学习的重大挑战。在论文中,我们以最简单和基本的方式解决了非平稳性问题,并提出\ textit {多代理替代Q学习}(MA2QL),在那里,代理商轮流通过Q学习来更新其Q-函数。MA2QL是完全分散合作MARL的一种\ Textit {Minimalist}方法,但理论上是基础的。我们证明,当每个代理商在每个回合都保证$ \ varepsilon $ -Convergence时,他们的联合政策会收敛到NASH平衡。实际上,MA2QL仅需要对独立Q学习(IQL)的最小变化。我们经验评估MA2QL对各种合作的多代理任务。结果表明,MA2QL始终胜过IQL,尽管这种变化很小,但它验证了MA2QL的有效性。
translated by 谷歌翻译
政策梯度方法在多智能体增强学习中变得流行,但由于存在环境随机性和探索代理(即非公平性​​),它们遭受了高度的差异,这可能因信用分配难度而受到困扰。结果,需要一种方法,该方法不仅能够有效地解决上述两个问题,而且需要足够强大地解决各种任务。为此,我们提出了一种新的多代理政策梯度方法,称为强大的本地优势(ROLA)演员 - 评论家。 Rola允许每个代理人将个人动作值函数作为当地评论家,以及通过基于集中评论家的新型集中培训方法来改善环境不良。通过使用此本地批评,每个代理都计算基准,以减少对其策略梯度估计的差异,这导致含有其他代理的预期优势动作值,这些选项可以隐式提高信用分配。我们在各种基准测试中评估ROLA,并在许多最先进的多代理政策梯度算法上显示其鲁棒性和有效性。
translated by 谷歌翻译
This work considers the problem of learning cooperative policies in complex, partially observable domains without explicit communication. We extend three classes of single-agent deep reinforcement learning algorithms based on policy gradient, temporal-difference error, and actor-critic methods to cooperative multi-agent systems. We introduce a set of cooperative control tasks that includes tasks with discrete and continuous actions, as well as tasks that involve hundreds of agents. The three approaches are evaluated against each other using different neural architectures, training procedures, and reward structures. Using deep reinforcement learning with a curriculum learning scheme, our approach can solve problems that were previously considered intractable by most multi-agent reinforcement learning algorithms. We show that policy gradient methods tend to outperform both temporal-difference and actor-critic methods when using feed-forward neural architectures. We also show that recurrent policies, while more difficult to train, outperform feed-forward policies on our evaluation tasks.
translated by 谷歌翻译
熵正则化是增强学习(RL)的流行方法。尽管它具有许多优势,但它改变了原始马尔可夫决策过程(MDP)的RL目标。尽管已经提出了差异正则化来解决这个问题,但不能微不足道地应用于合作的多代理增强学习(MARL)。在本文中,我们研究了合作MAL中的差异正则化,并提出了一种新型的非政策合作MARL框架,差异性的多代理参与者 - 参与者(DMAC)。从理论上讲,我们得出了DMAC的更新规则,该规则自然存在,并保证了原始MDP和Divergence regullatized MDP的单调政策改进和收敛。我们还给出了原始MDP中融合策略和最佳策略之间的差异。 DMAC是一个灵活的框架,可以与许多现有的MARL算法结合使用。从经验上讲,我们在教学随机游戏和Starcraft Multi-Agent挑战中评估了DMAC,并表明DMAC显着提高了现有的MARL算法的性能。
translated by 谷歌翻译
In multi-agent reinforcement learning (MARL), many popular methods, such as VDN and QMIX, are susceptible to a critical multi-agent pathology known as relative overgeneralization (RO), which arises when the optimal joint action's utility falls below that of a sub-optimal joint action in cooperative tasks. RO can cause the agents to get stuck into local optima or fail to solve tasks that require significant coordination between agents within a given timestep. Recent value-based MARL algorithms such as QPLEX and WQMIX can overcome RO to some extent. However, our experimental results show that they can still fail to solve cooperative tasks that exhibit strong RO. In this work, we propose a novel approach called curriculum learning for relative overgeneralization (CURO) to better overcome RO. To solve a target task that exhibits strong RO, in CURO, we first fine-tune the reward function of the target task to generate source tasks that are tailored to the current ability of the learning agent and train the agent on these source tasks first. Then, to effectively transfer the knowledge acquired in one task to the next, we use a novel transfer learning method that combines value function transfer with buffer transfer, which enables more efficient exploration in the target task. We demonstrate that, when applied to QMIX, CURO overcomes severe RO problem and significantly improves performance, yielding state-of-the-art results in a variety of cooperative multi-agent tasks, including the challenging StarCraft II micromanagement benchmarks.
translated by 谷歌翻译
多代理深度增强学习(Marl)缺乏缺乏共同使用的评估任务和标准,使方法之间的比较困难。在这项工作中,我们提供了一个系统评估,并比较了三种不同类别的Marl算法(独立学习,集中式多代理政策梯度,价值分解)在各种协作多智能经纪人学习任务中。我们的实验是在不同学习任务中作为算法的预期性能的参考,我们为不同学习方法的有效性提供了见解。我们开源EPYMARL,它将Pymarl CodeBase扩展到包括其他算法,并允许灵活地配置算法实现细节,例如参数共享。最后,我们开源两种环境,用于多智能经纪研究,重点关注稀疏奖励下的协调。
translated by 谷歌翻译
在合作的多代理增强学习(MARL)中,将价值​​分解与参与者 - 批评结合,使代理人能够学习随机政策,这更适合部分可观察到的环境。鉴于学习能够分散执行的本地政策的目标,通常认为代理人彼此独立,即使在集中式培训中也是如此。但是,这样的假设可能会禁止代理人学习最佳联合政策。为了解决这个问题,我们明确地将代理商之间的依赖性带入集中式培训。尽管这导致了最佳联合政策,但对于分散的执行,可能不会分解它。然而,从理论上讲,从这样的联合政策中,我们始终可以得出另一项联合政策,该政策可实现相同的最优性,但可以分解以分散的执行。为此,我们提出了多机构条件政策分解(MACPF),该政策分解(MACPF)需要进行更集中的培训,但仍可以实现分散的执行。我们在各种合作的MARL任务中验证MACPF,并证明MACPF比基线获得更好的性能或更快的收敛性。
translated by 谷歌翻译
In many real-world settings, a team of agents must coordinate their behaviour while acting in a decentralised way. At the same time, it is often possible to train the agents in a centralised fashion in a simulated or laboratory setting, where global state information is available and communication constraints are lifted. Learning joint actionvalues conditioned on extra state information is an attractive way to exploit centralised learning, but the best strategy for then extracting decentralised policies is unclear. Our solution is QMIX, a novel value-based method that can train decentralised policies in a centralised end-to-end fashion. QMIX employs a network that estimates joint action-values as a complex non-linear combination of per-agent values that condition only on local observations. We structurally enforce that the joint-action value is monotonic in the per-agent values, which allows tractable maximisation of the joint action-value in off-policy learning, and guarantees consistency between the centralised and decentralised policies. We evaluate QMIX on a challenging set of StarCraft II micromanagement tasks, and show that QMIX significantly outperforms existing value-based multi-agent reinforcement learning methods.
translated by 谷歌翻译
在计算机视觉和自然语言处理中,模型架构中的创新,提高模型容量的性能可靠地转化为性能增益。在与这种趋势的鲜明对比中,最先进的加强学习(RL)算法通常使用小的MLP,并且性能的增益通常来自算法创新。假设RL中的小型数据集需要简单的模型是很自然的,以避免过度装备;然而,这个假设是未经测试的。在本文中,我们调查RL代理商如何通过交换具有较大现代网络的小MLP,以跳过连接和标准化,专注于演员 - 评论家算法。我们经验验证,天真地采用这种架构导致不稳定和性能差,可能在实践中有助于简单模型的普及。但是,我们表明数据集大小不是限制因素,而是争辩说,不稳定性通过评论家占据渐变是罪魁祸首。我们证明光谱归一化(SN)可以减轻这个问题并使大型现代架构稳定训练。使用SN平滑后,较大的模型会产生显着的性能改进 - 表明除了算法创新外,通过专注于模型架构,可能拥有更多“简单”的收益。
translated by 谷歌翻译
Cooperative multi-agent reinforcement learning (MARL) has achieved significant results, most notably by leveraging the representation-learning abilities of deep neural networks. However, large centralized approaches quickly become infeasible as the number of agents scale, and fully decentralized approaches can miss important opportunities for information sharing and coordination. Furthermore, not all agents are equal -- in some cases, individual agents may not even have the ability to send communication to other agents or explicitly model other agents. This paper considers the case where there is a single, powerful, \emph{central agent} that can observe the entire observation space, and there are multiple, low-powered \emph{local agents} that can only receive local observations and are not able to communicate with each other. The central agent's job is to learn what message needs to be sent to different local agents based on the global observations, not by centrally solving the entire problem and sending action commands, but by determining what additional information an individual agent should receive so that it can make a better decision. In this work we present our MARL algorithm \algo, describe where it would be most applicable, and implement it in the cooperative navigation and multi-agent walker domains. Empirical results show that 1) learned communication does indeed improve system performance, 2) results generalize to heterogeneous local agents, and 3) results generalize to different reward structures.
translated by 谷歌翻译
在合作多智能体增强学习(Marl)中的代理商的创造和破坏是一个批判性的研究领域。当前的Marl算法通常认为,在整个实验中,组内的代理数量仍然是固定的。但是,在许多实际问题中,代理人可以在队友之前终止。这次早期终止问题呈现出挑战:终止的代理人必须从本集团的成功或失败中学习,这是超出其自身存在的成败。我们指代薪资奖励的传播价值作为遣返代理商作为追索的奖励作为追索权。当前的MARL方法通过将这些药剂放在吸收状态下,直到整组试剂达到终止条件,通过将这些药剂置于终止状态来处理该问题。虽然吸收状态使现有的算法和API能够在没有修改的情况下处理终止的代理,但存在实际培训效率和资源使用问题。在这项工作中,我们首先表明样本复杂性随着系统监督学习任务中的吸收状态的数量而增加,同时对变量尺寸输入更加强大。然后,我们为现有的最先进的MARL算法提出了一种新颖的架构,它使用注意而不是具有吸收状态的完全连接的层。最后,我们展示了这一新颖架构在剧集中创建或销毁的任务中的标准架构显着优于标准架构以及标准的多代理协调任务。
translated by 谷歌翻译