剂量体积直方图(DVH)指标是诊所中广泛接受的评估标准。但是,将这些指标纳入深度学习剂量预测模型,这是由于其非跨性别性和非差异性而具有挑战性的。我们提出了一种基于力矩的新型损失功能,用于预测具有挑战性的常规肺强度调节疗法(IMRT)计划的3D剂量分布。基于力矩的损耗函数是凸面和可区分的,并且可以轻松地将DVH指标合并到没有计算开销的任何深度学习框架中。也可以定制这些矩,以反映3D剂量预测中的临床优先级。例如,使用高阶矩可以在高剂量区域中更好地预测串行结构。我们使用了360的大型数据集(240次培训,50次进行验证,70次进行测试),使用2GY $ \ times $ 30分数的常规肺部患者使用我们机构的临床治疗计划来训练深度学习(DL)模型。我们使用计算机断层扫描(CT),计划目标体积(PTV)和风险风险轮廓(OAR)培训了UNET,例如CNN体系结构,以推断相应的素素3D剂量分布。我们评估了三种不同的损失函数:(1)流行的平均绝对误差(MAE)损失,(2)最近开发的MAE + DVH损失,以及(3)提出的MAE +矩损失。使用不同的DVH指标以及剂量得分和DVH得分比较了预测的质量,该指标最近由AAPM知识的计划大挑战挑战。具有(MAE +力矩)损耗函数的模型通过显着提高DVH得分(11%,p $ <$ 0.01),而具有相似的计算成本,从而超过了MAE损失的模型。它还优于接受(MAE+DVH)训练的模型,它可以显着提高计算成本(48%)和DVH得分(8%,p $ <$ 0.01)。
translated by 谷歌翻译
开发了一个3D深度学习模型(OARNet)并用于在CT图像上描绘28 H&N OAR。 OARNET利用密集连接的网络来检测OAR边界盒,然后在盒子内划定OAR。它将来自任何层的信息重用到后续层,并使用跳过连接来组合来自不同密集块电平的信息来逐步提高描绘精度。培训最多使用最多28名专家手册划定(MD)桨从165 CTS划算。骰子相似度系数(DSC)和第95百分位HAUSDORFF距离(HD95)相对于MD评估了70个其他CT。对MD的平均值,最大和根平均方形剂量差异评估了70cts的56个。 oarnet与UANET,ANATOMYNET和MULTI-ATLAS分段(MAS)进行比较。使用95%置信区间的Wilcoxon签名级别测试用于评估意义。 Wilcoxon签署了排名测试表明,与UANET相比,OARNET改善了(P <0.05)DSC(23/28桨)和HD95(17/28)。 OARNet优于DSC(28/28)和HD95(27/28)的Anatomynet和MAS。与UANET相比,OARNET将中位数DSC改善至0.05和HD95,高达1.5mm。与Anatomynet和MAS相比,OARNET将中位数(DSC,HD95)改为高达(0.08,2.7mm)和(0.17,6.3mm)。 DoSimetry,Oarnet优于Uanet(Dmax 7/28; Dmean 10/28),Anatomynet(Dmax 21/28; Dmean 24/28)和MAS(Dmax 22/28; Dmean 21/28)。 DenSenet架构使用混合方法进行优化,该混合方法执行OAR特定的边界框检测,然后是要素识别。与其他自动描绘方法相比,Oarnet优于或等于所有几何(颞叶L,HD95)和28 H&N OAR的一个剂量(眼睛L,平均剂量)终点,并且优于或者等于所有OAR的Anatomynet和MAS。
translated by 谷歌翻译
风险的准确器官(OAR)分割对于减少治疗后并发症的放射治疗至关重要。达人指南推荐头部和颈部(H&N)区域的一套超过40桨的桨,然而,由于这项任务的可预测的禁止劳动力成本,大多数机构通过划定较小的桨子和忽视的少数,选择了大量简化的协议与其他桨相关的剂量分布。在这项工作中,我们提出了一种使用深度学习的新颖,自动化和高效的分层OAR分段(SOARS)系统,精确地描绘了一套全面的42 H&N OAR。 SOARS将42桨分层进入锚,中级和小型和硬质子类别,通过神经结构搜索(NAS)原则,专门为每个类别提供神经网络架构。我们在内在机构中使用176名培训患者建立了SOAR模型,并在六个不同的机构中独立评估了1327名外部患者。对于每个机构评估,它始终如一地表现出其他最先进的方法至少3-5%的骰子得分(在其他度量的相对误差减少36%)。更重要的是,广泛的多用户研究明显证明,98%的SOARE预测只需要非常轻微或没有直接临床验收的修订(节省90%的辐射脑神经工作负载),并且它们的分割和剂量准确度在于或小于帧 - 用户的变化。这些调查结果证实了H&N癌症放射疗法工作流OAR描绘过程的强烈临床适用性,提高了效率,全面性和质量。
translated by 谷歌翻译
放射疗法逆计划通常要求规划者在治疗计划系统的目标职能下修改参数,以在临床上可接受的计划中产生。由于此过程中的手动步骤,计划质量可能因规划时间和规划师技能而有所不同。本研究调查了两个用于自动逆计划的高参考方法。由于此框架不会在以前优化的计划上培训模型,因此可以随时适应实践模式变化,并且计划质量不受培训队列的限制。我们选择了10名接受肺部SBRT的患者使用手动生成的临床计划。我们使用随机采样(RS)和贝叶斯优化(BO)使用基于11个临床目标的线性二次实用程序功能来调谐参数。将所有计划归一化为PTV D95等于48 GY,我们比较了自动生成和手动制定的计划的计划质量。我们还调查了迭代计数对自动生成的计划的影响,比较了RS和Bo计划的计划时间和计划实用程序,而不会停止标准。如果没有停止标准,RS和BO计划的中位数规划时间为1.9和2.3小时。 RS和B​​O计划中的OAR剂量在临床剂量限制下的48.7%和60.4%的中位数(MPD),低于临床计划剂量的2.8%和3.3%的MPD。通过停止标准,效用降低了5.3%和3.9%的RS和BO计划,但中位规划时间降至0.5%和0.7小时,OAR剂量仍有42.9%和49.7%的MPD为42.9%和49.7%临床剂量限制和MPD为0.3%和1.8%以下低于临床计划剂量。本研究表明,自动逆计划的超参数调整方法可以减少与计划质量相似或优于手动生成的计划的主动规划时间。
translated by 谷歌翻译
为了开发直肠癌的自动化工作流程,三维形成式放射治疗计划,结合了深度学习(DL)孔径预测和前向规划算法。我们设计了一种算法来自动化临床工作流程,以使用现场场地进行计划。对555名患者进行了训练,验证和测试DL模型,以自动生成一级和增强场的光圈形状。网络输入是数字重建的X射线照相,总肿瘤体积(GTV)和Nodal GTV。一名医师以5分制(> 3个可以接受)为20名患者的每个孔径为每个孔径评分。然后开发了一种计划算法,以使用楔形和子场的组合创建均匀剂量。该算法迭代识别热点卷,创建子字段并在没有用户干预的情况下优化光束重量。使用具有不同设置的临床光圈对20例患者进行了测试,并由医生评分结果计划(4例计划/患者)。端到端的工作流程通过医生对39名使用DL生成的孔径和计划算法进行了测试和评分。预测的孔的骰子得分分别为0.95、0.94和0.90,分别为侧面,外侧和升压场。 100%,95%和87.5%的后侧,外侧和升压孔分别为临床上可接受。在85%和50%的患者中,楔形计划和非界定计划在临床上是可以接受的。最终计划的热点剂量百分比从121%($ \ $ 14%)降低到处方剂量的109%($ \ pm $ 5%)。自动生成的光圈和优化现场计划的综合端到端工作流程为38/39(97%)的患者提供了可接受的计划。我们已经成功地自动化了临床工作流程,以为我们的机构生成放射疗法计划。
translated by 谷歌翻译
肺癌是癌症相关死亡率的主要原因。尽管新技术(例如图像分割)对于改善检测和较早诊断至关重要,但治疗该疾病仍然存在重大挑战。特别是,尽管治愈性分辨率增加,但许多术后患者仍会出现复发性病变。因此,非常需要预后工具,可以更准确地预测患者复发的风险。在本文中,我们探讨了卷积神经网络(CNN)在术前计算机断层扫描(CT)图像中存在的分割和复发风险预测。首先,随着医学图像分割的最新进展扩展,剩余的U-NET用于本地化和表征每个结节。然后,确定的肿瘤将传递给第二个CNN进行复发风险预测。该系统的最终结果是通过随机的森林分类器产生的,该分类器合成具有临床属性的第二个网络的预测。分割阶段使用LIDC-IDRI数据集,并获得70.3%的骰子得分。复发风险阶段使用了国家癌症研究所的NLST数据集,并获得了73.0%的AUC。我们提出的框架表明,首先,自动结节分割方法可以概括地为各种多任务系统提供管道,其次,深度学习和图像处理具有改善当前预后工具的潜力。据我们所知,这是第一个完全自动化的细分和复发风险预测系统。
translated by 谷歌翻译
目的:基于知识的计划(KBP)通常涉及培训端到端深度学习模型以预测剂量分布。但是,由于经常使用的医疗数据集规模有限,端到端方法可能与实际限制有关。为了解决这些局限性,我们提出了一种基于内容的图像检索(CBIR)方法,用于根据解剖学相似性检索先前计划的患者的剂量分布。方法:我们提出的CBIR方法训练一种代表模型,该模型可产生患者解剖信息的潜在空间嵌入。然后将新患者的潜在空间嵌入与数据库中以前患者的潜在空间嵌入,以检索剂量分布的图像。该项目的所有源代码均可在GitHub上获得。主要结果:在由我们机构的公开计划和临床计划组成的数据集上评估了各种CBIR方法的检索性能。这项研究比较了各种编码方法,从简单的自动编码器到Simsiam等最新的暹罗网络,并且在Multipask Siamese网络中观察到了最佳性能。意义:应用CBIR告知后续的治疗计划可能会解决与端到端KBP相关的许多限制。我们目前的结果表明,可以通过对先前开发的暹罗网络进行轻微更改来获得出色的图像检索性能。我们希望通过Metaplanner框架等方法将CBIR集成到未来工作中的自动化计划工作流程中。
translated by 谷歌翻译
Deformable registration of two-dimensional/three-dimensional (2D/3D) images of abdominal organs is a complicated task because the abdominal organs deform significantly and their contours are not detected in two-dimensional X-ray images. We propose a supervised deep learning framework that achieves 2D/3D deformable image registration between 3D volumes and single-viewpoint 2D projected images. The proposed method learns the translation from the target 2D projection images and the initial 3D volume to 3D displacement fields. In experiments, we registered 3D-computed tomography (CT) volumes to digitally reconstructed radiographs generated from abdominal 4D-CT volumes. For validation, we used 4D-CT volumes of 35 cases and confirmed that the 3D-CT volumes reflecting the nonlinear and local respiratory organ displacement were reconstructed. The proposed method demonstrate the compatible performance to the conventional methods with a dice similarity coefficient of 91.6 \% for the liver region and 85.9 \% for the stomach region, while estimating a significantly more accurate CT values.
translated by 谷歌翻译
肺癌是最致命的癌症之一,部分诊断和治疗取决于肿瘤的准确描绘。目前是最常见的方法的人以人为本的分割,须遵守观察者间变异性,并且考虑到专家只能提供注释的事实,也是耗时的。最近展示了有前途的结果,自动和半自动肿瘤分割方法。然而,随着不同的研究人员使用各种数据集和性能指标验证了其算法,可靠地评估这些方法仍然是一个开放的挑战。通过2018年IEEE视频和图像处理(VIP)杯竞赛创建的计算机断层摄影扫描(LOTUS)基准测试的肺起源肿瘤分割的目标是提供唯一的数据集和预定义的指标,因此不同的研究人员可以开发和以统一的方式评估他们的方法。 2018年VIP杯始于42个国家的全球参与,以获得竞争数据。在注册阶段,有129名成员组成了来自10个国家的28个团队,其中9个团队将其达到最后阶段,6队成功完成了所有必要的任务。简而言之,竞争期间提出的所有算法都是基于深度学习模型与假阳性降低技术相结合。三种决赛选手开发的方法表明,有希望的肿瘤细分导致导致越来越大的努力应降低假阳性率。本次竞争稿件概述了VIP-Cup挑战,以及所提出的算法和结果。
translated by 谷歌翻译
最近关于Covid-19的研究表明,CT成像提供了评估疾病进展和协助诊断的有用信息,以及帮助理解疾病。有越来越多的研究,建议使用深度学习来使用胸部CT扫描提供快速准确地定量Covid-19。兴趣的主要任务是胸部CT扫描的肺和肺病变的自动分割,确认或疑似Covid-19患者。在这项研究中,我们使用多中心数据集比较12个深度学习算法,包括开源和内部开发的算法。结果表明,合并不同的方法可以提高肺部分割,二元病变分割和多种子病变分割的总体测试集性能,从而分别为0.982,0.724和0.469的平均骰子分别。将得到的二元病变分段为91.3ml的平均绝对体积误差。通常,区分不同病变类型的任务更加困难,分别具有152mL的平均绝对体积差,分别为整合和磨碎玻璃不透明度为0.369和0.523的平均骰子分数。所有方法都以平均体积误差进行二元病变分割,该分段优于人类评估者的视觉评估,表明这些方法足以用于临床实践中使用的大规模评估。
translated by 谷歌翻译
机器学习和计算机视觉技术近年来由于其自动化,适合性和产生惊人结果的能力而迅速发展。因此,在本文中,我们调查了2014年至2022年之间发表的关键研究,展示了不同的机器学习算法研究人员用来分割肝脏,肝肿瘤和肝脉管结构的研究。我们根据感兴趣的组织(肝果,肝肿瘤或肝毒剂)对被调查的研究进行了划分,强调了同时解决多个任务的研究。此外,机器学习算法被归类为受监督或无监督的,如果属于某个方案的工作量很大,则将进一步分区。此外,对文献和包含上述组织面具的网站发现的不同数据集和挑战进行了彻底讨论,强调了组织者的原始贡献和其他研究人员的贡献。同样,在我们的评论中提到了文献中过度使用的指标,这强调了它们与手头的任务的相关性。最后,强调创新研究人员应对需要解决的差距的关键挑战和未来的方向,例如许多关于船舶分割挑战的研究的稀缺性以及为什么需要早日处理他们的缺席。
translated by 谷歌翻译
头部和颈部(H \&N)肿瘤的分割和患者结果的预测对于患者的疾病诊断和治疗监测至关重要。强大的深度学习模型的当前发展受到缺乏大型多中心,多模态数据的阻碍,质量注释。 Miccai 2021头部和颈部肿瘤(Hecktor)分割和结果预测挑战产生了一种平台,用于比较氟 - 脱氧葡萄糖(FDG)-PET上的初级总体目标体积的分段方法和计算的断层摄影图像和预测H中的无进展生存对于细分任务,我们提出了一种基于编码器 - 解码器架构的新网络,具有完整的和跳过连接,以利用全尺度的低级和高级语义。此外,我们使用条件随机字段作为优化预测分段映射的后处理步骤。我们训练了多个用于肿瘤体积分割的神经网络,并且这些分段被整合在交叉验证中实现了0.75的平均骰子相似度系数,并在挑战测试数据集中实现了0.76。为了预测患者进展免费生存任务,我们提出了一种组合临床,辐射和深层学习特征的Cox比例危害回归。我们的生存预测模型在交叉验证中实现了0.82的一致性指数,并在挑战测试数据集中获得0.62。
translated by 谷歌翻译
人类生理学中的各种结构遵循特异性形态,通常在非常细的尺度上表达复杂性。这种结构的例子是胸前气道,视网膜血管和肝血管。可以观察到可以观察到可以观察到可以观察到可以观察到空间排列的磁共振成像(MRI),计算机断层扫描(CT),光学相干断层扫描(OCT)等医学成像模式(MRI),计算机断层扫描(CT),可以观察到空间排列的大量2D和3D图像的集合。这些结构在医学成像中的分割非常重要,因为对结构的分析提供了对疾病诊断,治疗计划和预后的见解。放射科医生手动标记广泛的数据通常是耗时且容易出错的。结果,在过去的二十年中,自动化或半自动化的计算模型已成为医学成像的流行研究领域,迄今为止,许多计算模型已经开发出来。在这项调查中,我们旨在对当前公开可用的数据集,细分算法和评估指标进行全面审查。此外,讨论了当前的挑战和未来的研究方向。
translated by 谷歌翻译
肺癌是世界大多数国家的死亡原因。由于提示肿瘤的诊断可以允许肿瘤学家辨别他们的性质,类型和治疗方式,CT扫描图像的肿瘤检测和分割是全球的关键研究领域。本文通过在Lotus DataSet上应用二维离散小波变换(DWT)来接近肺肿瘤分割,以进行更细致的纹理分析,同时将来自相邻CT切片的信息集成到馈送到深度监督的多路仓模型之前。在训练网络的同时,学习速率,衰减和优化算法的变化导致了不同的骰子共同效率,其详细统计数据已经包含在本文中。我们还讨论了此数据集中的挑战以及我们选择如何克服它们。本质上,本研究旨在通过试验多个适当的网络来最大化从二维CT扫描切片预测肿瘤区域的成功率,导致骰子共同效率为0.8472。
translated by 谷歌翻译
深度学习进展到几乎所有医疗领域中最重要的技术之一。特别是在与医学成像有关的领域中,它起着重要作用。然而,在介入放疗(近距离放射治疗)中,深度学习仍处于早期阶段。在这篇综述中,首先,我们研究并审查了深度学习在介入放射疗法和直接相关领域的所有过程中的作用。此外,我们总结了最新的发展。为了重现深度学习算法的结果,必须提供源代码和培训数据。因此,这项工作的第二个重点是分析开源,开放数据和开放模型的可用性。在我们的分析中,我们能够证明深度学习在某些介入放射疗法领域已经起着主要作用,但在其他方面仍然很少出现。然而,随着年份的影响,它的影响正在增加,部分自我推广,但也受到密切相关领域的影响。开源,数据和模型的数量正在增长,但仍然很少,并且在不同的研究小组之间分布不均。不愿发布代码,数据和模型限制了可重复性,并将评估限制为单一机构数据集。总结,深度学习将积极改变介入放射疗法的工作流程,但是在可再现的结果和标准化评估方法方面,有改进的余地。
translated by 谷歌翻译
肿瘤分割是放疗治疗计划的基本步骤。为了确定口咽癌患者(OPC)原发性肿瘤(GTVP)的准确分割,需要同时评估不同图像模态,并从不同方向探索每个图像体积。此外,分割的手动固定边界忽略了肿瘤描述中已知的空间不确定性。这项研究提出了一种新型的自动深度学习(DL)模型,以在注册的FDG PET/CT图像上进行逐片自适应GTVP分割的辐射肿瘤学家。我们包括138名在我们研究所接受过(化学)辐射治疗的OPC患者。我们的DL框架利用了间和板板的上下文。连续3片的串联FDG PET/CT图像和GTVP轮廓的序列用作输入。进行了3倍的交叉验证,进行了3​​次,对从113例患者的轴向(a),矢状(s)和冠状(c)平面提取的序列进行了训练。由于体积中的连续序列包含重叠的切片,因此每个切片产生了平均的三个结果预测。在A,S和C平面中,输出显示具有预测肿瘤的概率不同的区域。使用平均骰子得分系数(DSC)评估了25名患者的模型性能。预测是最接近地面真理的概率阈值(在A中为0.70,s为0.70,在s中为0.77,在C平面中为0.80)。提出的DL模型的有希望的结果表明,注册的FDG PET/CT图像上的概率图可以指导逐片自适应GTVP分割中的辐射肿瘤学家。
translated by 谷歌翻译
Clinical diagnostic and treatment decisions rely upon the integration of patient-specific data with clinical reasoning. Cancer presents a unique context that influence treatment decisions, given its diverse forms of disease evolution. Biomedical imaging allows noninvasive assessment of disease based on visual evaluations leading to better clinical outcome prediction and therapeutic planning. Early methods of brain cancer characterization predominantly relied upon statistical modeling of neuroimaging data. Driven by the breakthroughs in computer vision, deep learning became the de facto standard in the domain of medical imaging. Integrated statistical and deep learning methods have recently emerged as a new direction in the automation of the medical practice unifying multi-disciplinary knowledge in medicine, statistics, and artificial intelligence. In this study, we critically review major statistical and deep learning models and their applications in brain imaging research with a focus on MRI-based brain tumor segmentation. The results do highlight that model-driven classical statistics and data-driven deep learning is a potent combination for developing automated systems in clinical oncology.
translated by 谷歌翻译
数据已成为当今世界上最有价值的资源。随着数据驱动算法的大量扩散,例如基于深度学习的方法,数据的可用性引起了极大的兴趣。在这种情况下,特别需要高质量的培训,验证和测试数据集。体积数据是医学中非常重要的资源,因为它范围从疾病诊断到治疗监测。如果数据集足够,则可以培训模型来帮助医生完成这些任务。不幸的是,在某些情况和应用程序中,大量数据不可用。例如,在医疗领域,罕见疾病和隐私问题可能导致数据可用性受到限制。在非医学领域,获得足够数量的高质量数据的高成本也可能引起人们的关注。解决这些问题的方法可能是生成合成数据,以结合其他更传统的数据增强方法来执行数据增强。因此,关于3D生成对抗网络(GAN)的大多数出版物都在医疗领域内。生成现实合成数据的机制的存在是克服这一挑战的好资产,尤其是在医疗保健中,因为数据必须具有良好的质量并且接近现实,即现实,并且没有隐私问题。在这篇综述中,我们提供了使用GAN生成现实的3D合成数据的作品的摘要。因此,我们概述了具有共同体系结构,优势和缺点的这些领域中基于GAN的方法。我们提出了一种新颖的分类学,评估,挑战和研究机会,以提供医学和其他领域甘恩当前状态的整体概述。
translated by 谷歌翻译
基于深度学习的疾病检测和分割算法承诺提高许多临床过程。然而,由于数据隐私,法律障碍和非统一数据采集协议,此类算法需要大量的注释训练数据,通常在医学环境中不可用。具有注释病理学的合成数据库可以提供所需的培训数据量。我们展示了缺血性卒中的例子,即利用基于深度学习的增强的病变分割的改善是可行的。为此,我们训练不同的图像到图像转换模型,以合成大脑体积的磁共振图像,并且没有来自语义分割图的中风病变。此外,我们培养一种生成的对抗性网络来产生合成病变面具。随后,我们组合这两个组件来构建大型合成描边图像数据库。使用U-NET评估各种模型的性能,该U-NET在临床测试集上培训以进行段中风病变。我们向最佳性能报告$ \ mathbf {72.8} $%[$ \ mathbf {70.8 \ pm1.0} $%]的骰子分数,这胜过了单独临床图像培训的模型培训$ \ mathbf { 67.3} $%[$ \ mathbf {63.2 \ pm1.9} $%],并且接近人类互相互联网骰子评分$ \ mathbf {76.9} $%。此外,我们表明,对于仅为10或50个临床案例的小型数据库,与使用不使用合成数据的设置相比,合成数据增强产生了显着的改进。据我们所知,这提出了基于图像到图像翻译的合成数据增强的第一个比较分析,并将第一应用于缺血性卒中。
translated by 谷歌翻译
当肿瘤学家估计癌症患者的生存时,他们依靠多模式数据。尽管文献中已经提出了一些多模式的深度学习方法,但大多数人都依靠拥有两个或多个独立的网络,这些网络在整个模型的稍后阶段共享知识。另一方面,肿瘤学家在分析中没有这样做,而是通过多种来源(例如医学图像和患者病史)融合大脑中的信息。这项工作提出了一种深度学习方法,可以在量化癌症和估计患者生存时模仿肿瘤学家的分析行为。我们提出了TMSS,这是一种基于端到端变压器的多模式网络,用于分割和生存预测,该网络利用了变压器的优越性,这在于其能力处理不同模态的能力。该模型经过训练并验证了从头部和颈部肿瘤分割的训练数据集上的分割和预后任务以及PET/CT图像挑战(Hecktor)中的结果预测。我们表明,所提出的预后模型显着优于最先进的方法,其一致性指数为0.763 +/- 0.14,而与独立段模型相当的骰子得分为0.772 +/- 0.030。该代码公开可用。
translated by 谷歌翻译