随机重球(SHB)和Nesterov的加速随机梯度(ASG)是随机优化的流行动量方法。尽管对确定性环境中这种加速思想的好处有充分的理解,但它们在随机优化方面的优势仍然尚不清楚。实际上,在某些特定情况下,众所周知,在样本复杂性意义上,动量无济于事。我们的工作表明,类似的结果实际上是整个二次优化的。具体而言,我们为该家族获得了SHB和ASG样品复杂性的下限,并表明Vanilla SGD可以实现相同的结合。我们注意到,存在二次优化中基于动量方法的优势的结果,但这些方法基于单方面或有缺陷的分析。
translated by 谷歌翻译
最近,在学习没有更换SGD的收敛率的情况下,有很多兴趣,并证明它在最坏情况下比更换SGD更快。然而,已知的下限忽略了问题的几何形状,包括其条件号,而上限明确取决于它。也许令人惊讶的是,我们证明,当考虑条件号时,没有替换SGD \ EMPH {没有}在最坏情况下,除非是时期的数量(通过数据来说)大于条件号。由于机器学习和其他领域的许多问题都没有条件并涉及大型数据集,这表明没有替换不一定改善用于现实迭代预算的更换采样。我们通过提供具有紧密(最多日志因子)的新下限和上限来展示这一点,用于致通二次术语的二次问题,精确地量化了对问题参数的依赖性。
translated by 谷歌翻译
简单的随机动量方法被广泛用于机器学习优化,但它们的良好实践表现与文献中没有理论保证的理论保证相矛盾。在这项工作中,我们的目标是通过表明随机重球动量来弥合理论和实践之间的差距,该动力可以解释为具有动量的随机kaczmarz算法,保留了二次优化问题(确定性)重球动量的快速线性速率,至少在使用足够大的批次大小的小型匹配时。该分析依赖于仔细分解动量过渡矩阵,并使用新的光谱范围浓度界限来进行独立随机矩阵的产物。我们提供数值实验,以证明我们的边界相当锐利。
translated by 谷歌翻译
最近对基于置换的SGD的接地结果进行了证实了广泛观察到的现象:随机排列提供更快的收敛性,而不是更换采样。但是,是随机的最佳状态吗?我们表明这一点在很大程度上取决于我们正在优化的功能,并且最佳和随机排放之间的收敛差距可能因指数而异。我们首先表明,对于具有光滑的第二衍生物的1维强凸功能,与随机相比,存在令人指导的收敛性的排列。但是,对于一般强凸的功能,随机排列是最佳的。最后,我们表明,对于二次,强凸的功能,与随机相比,存在易于构建的置换,从而导致加速会聚。我们的研究结果表明,最佳排列的一般收敛性表征不能捕获各个函数类的细微差别,并且可能错误地表明一个人不能比随机更好。
translated by 谷歌翻译
随机梯度下降(SGD)已被证明在许多深度学习应用中都很好地概括了。在实践中,人们经常以几何衰减的步骤运行SGD,即,恒定的初始步骤,然后是多个几何步骤衰减,并将最后一个迭代用作输出。已知这种SGD几乎对经典有限维线性回归问题几乎是最佳的(Ge等,2019)。但是,在过度参数化设置中对SGD的最后一次迭代进行了彻底的分析。在本文中,我们对SGD的最后一个迭代风险界限进行了依赖问题的分析,并具有腐烂的步骤,以(过度参数化)线性回归问题。特别是,对于带有(尾部)几何衰减步骤的最后迭代SGD,我们证明了多余风险的上限和下限几乎匹配。此外,我们为最后一次迭代的SGD提供了多余的风险下限,并以多项式衰减的步骤进行了大小,并以实例的方式证明了几何腐烂的步骤的优势,这补充了先前工作中的最小值比较。
translated by 谷歌翻译
我们提供了新的基于梯度的方法,以便有效解决广泛的病态化优化问题。我们考虑最小化函数$ f:\ mathbb {r} ^ d \ lightarrow \ mathbb {r} $的问题,它是隐含的可分解的,作为$ m $未知的非交互方式的总和,强烈的凸起功能并提供方法这解决了这个问题,这些问题是缩放(最快的对数因子)作为组件的条件数量的平方根的乘积。这种复杂性绑定(我们证明几乎是最佳的)可以几乎指出的是加速梯度方法的几乎是指数的,这将作为$ F $的条件数量的平方根。此外,我们提供了求解该多尺度优化问题的随机异标变体的有效方法。而不是学习$ F $的分解(这将是过度昂贵的),而是我们的方法应用一个清洁递归“大步小步”交错标准方法。由此产生的算法使用$ \ tilde {\ mathcal {o}}(d m)$空间,在数字上稳定,并打开门以更细粒度的了解凸优化超出条件号的复杂性。
translated by 谷歌翻译
随机梯度下降(SGD)的梯度噪声被认为是在其性质中发挥关键作用(例如,逃离低潜在点和正则化)。过去的研究表明,通过迷你匹配完成的SGD错误的协方差在确定其正则化并逃离低潜在点时起着关键作用。然而,探索了误差的分布量影响了算法的行为。在该领域的一些新研究的动机,我们通过迷你匹配具有相同的SGD的平均值和协方差结构的噪声类别证明了普遍性的结果具有类似的性质。我们主要考虑由Wu等人引入的乘法随机梯度下降(M-SGD)算法。,它具有比通过小拟场完成的SGD算法更普通的噪声类。我们主要相对于通过小匹匹配对应于SGD的随机微分方程来建立非因素范围。我们还表明,M-SGD错误大约是M-SGD算法的任何固定点的缩放高斯分布。我们还建立了强凸的制度中M-SGD算法的收敛的界限。
translated by 谷歌翻译
最近,随机梯度下降(SGD)及其变体已成为机器学习(ML)问题大规模优化的主要方法。已经提出了各种策略来调整步骤尺寸,从自适应步骤大小到启发式方法,以更改每次迭代中的步骤大小。此外,动力已被广泛用于ML任务以加速训练过程。然而,我们对它们的理论理解存在差距。在这项工作中,我们开始通过为一些启发式优化方法提供正式保证并提出改进的算法来缩小这一差距。首先,我们分析了凸面和非凸口设置的Adagrad(延迟Adagrad)步骤大小的广义版本,这表明这些步骤尺寸允许算法自动适应随机梯度的噪声水平。我们首次显示延迟Adagrad的足够条件,以确保梯度几乎融合到零。此外,我们对延迟的Adagrad及其在非凸面设置中的动量变体进行了高概率分析。其次,我们用指数级和余弦的步骤分析了SGD,在经验上取得了成功,但缺乏理论支持。我们在平滑和非凸的设置中为它们提供了最初的收敛保证,有或没有polyak-{\ l} ojasiewicz(pl)条件。我们还显示了它们在PL条件下适应噪声的良好特性。第三,我们研究动量方法的最后迭代。我们证明了SGD的最后一个迭代的凸设置中的第一个下限,并以恒定的动量。此外,我们研究了一类跟随基于领先的领导者的动量算法,并随着动量和收缩的更新而增加。我们表明,他们的最后一个迭代具有最佳的收敛性,用于无约束的凸随机优化问题。
translated by 谷歌翻译
通过在线规范相关性分析的问题,我们提出了\ emph {随机缩放梯度下降}(SSGD)算法,以最小化通用riemannian歧管上的随机功能的期望。 SSGD概括了投影随机梯度下降的思想,允许使用缩放的随机梯度而不是随机梯度。在特殊情况下,球形约束的特殊情况,在广义特征向量问题中产生的,我们建立了$ \ sqrt {1 / t} $的令人反感的有限样本,并表明该速率最佳最佳,直至具有积极的积极因素相关参数。在渐近方面,一种新的轨迹平均争论使我们能够实现局部渐近常态,其速率与鲁普特 - Polyak-Quaditsky平均的速率匹配。我们将这些想法携带在一个在线规范相关分析,从事文献中的第一次获得了最佳的一次性尺度算法,其具有局部渐近融合到正常性的最佳一次性尺度算法。还提供了用于合成数据的规范相关分析的数值研究。
translated by 谷歌翻译
Q学习长期以来一直是最受欢迎的强化学习算法之一,几十年来,Q学习的理论分析一直是一个活跃的研究主题。尽管对Q-学习的渐近收敛分析的研究具有悠久的传统,但非肿瘤收敛性直到最近才受到积极研究。本文的主要目的是通过控制系统的观点研究马尔可夫观察模型下异步Q学习的新有限时间分析。特别是,我们引入了Q学习的离散时间变化的开关系统模型,并减少了分析的步骤尺寸,这显着改善了使用恒定步骤尺寸的开关系统分析的最新开发,并导致\(\(\)(\) Mathcal {o} \ left(\ sqrt {\ frac {\ log k} {k}}} \ right)\)\)\)\)\)\)\)\)与大多数艺术状态相当或更好。同时,新应用了使用类似转换的技术,以避免通过减小的步骤尺寸提出的分析中的难度。提出的分析带来了其他见解,涵盖了不同的方案,并提供了新的简化模板,以通过其独特的连接与离散时间切换系统的独特联系来加深我们对Q学习的理解。
translated by 谷歌翻译
我们研究了随机双线性最小利益的优化问题,呈现了恒定步长的相同样本随机以(SEG)方法的分析,并呈现了产生有利收敛的方法的变化。在锐度对比度与基本的SEG方法相比,其最后迭代仅对纳什均衡的固定邻域,SEG以相同的标准设置在相同的标准设置下可被提供给NASH均衡的迭代,并且通过结合预定,进一步提高了这种速率重新启动程序。在插值环境中,噪声在纳什均衡消失时,我们达到了最佳的常量收敛速度。我们展示了验证我们理论发现的数值实验,并在配备迭代平均和重启时证明SEG方法的有效性。
translated by 谷歌翻译
我们考虑通过流算法从单个轨迹估计线性时间不变(LTI)动态系统的问题,这在包括增强学习(RL)和时间序列分析的若干应用中遇到。虽然LTI系统估计问题在{\ em离线}设置中进行了很好地研究,但实际上重要的流媒体/在线设置很少受到关注。如随机梯度下降(SGD)等标准流动方法不太可能起作用,因为流点可以高度相关。在这项工作中,我们提出了一种新颖的流媒体算法,SGD具有反向体验的重播($ \ MATHSF {SGD} - \ MATHSF {RER),这是由RL文献中流行的体验重播(ER)技术的启发。 $ \ mathsf {sgd} - \ mathsf {rer} $划分为小缓冲区,并在存储在单个缓冲区中的数据后向后运行SGD。我们表明该算法精确地解构了依赖结构,并获得了从理论上最佳保证的信息,用于参数误差和预测误差。因此,我们提供了我们的第一至最佳的知识 - 最佳的SGD风格算法,用于使用一阶Oracle的线性系统识别的经典问题。此外,$ \ mathsf {sgd} - \ mathsf {rer} $可以应用于具有已知稀疏模式和非线性动态系统的稀疏LTI识别的更多常规设置。我们的工作表明,数据依赖性结构的知识可以帮助我们在统计上和计算上的算法设计中,这些算法可以“去相关”流样本。
translated by 谷歌翻译
We propose a new method for estimating the minimizer $\boldsymbol{x}^*$ and the minimum value $f^*$ of a smooth and strongly convex regression function $f$ from the observations contaminated by random noise. Our estimator $\boldsymbol{z}_n$ of the minimizer $\boldsymbol{x}^*$ is based on a version of the projected gradient descent with the gradient estimated by a regularized local polynomial algorithm. Next, we propose a two-stage procedure for estimation of the minimum value $f^*$ of regression function $f$. At the first stage, we construct an accurate enough estimator of $\boldsymbol{x}^*$, which can be, for example, $\boldsymbol{z}_n$. At the second stage, we estimate the function value at the point obtained in the first stage using a rate optimal nonparametric procedure. We derive non-asymptotic upper bounds for the quadratic risk and optimization error of $\boldsymbol{z}_n$, and for the risk of estimating $f^*$. We establish minimax lower bounds showing that, under certain choice of parameters, the proposed algorithms achieve the minimax optimal rates of convergence on the class of smooth and strongly convex functions.
translated by 谷歌翻译
如今,重球(HB)是非凸优化中最流行的动量方法之一。已经广泛观察到,将重球动态纳入基于梯度的方法中可以加速现代机器学习模型的训练过程。但是,建立其加速理论基础的进展显然远远落后于其经验成功。现有的可证明的加速结果是二次或近二次功能,因为当前显示HB加速度的技术仅限于Hessian固定时的情况。在这项工作中,我们开发了一些新技术,这些新技术有助于表现出二次超越二次的加速度,这是通过分析在两个连续时间点上如何变化的Hessian的变化来实现的,从而影响了收敛速度。基于我们的技术结果,一类Polyak- \ l {} Ojasiewicz(PL)优化问题可以通过HB确定可证明的加速度。此外,我们的分析证明了适应性设置动量参数的好处。
translated by 谷歌翻译
我们研究了随机近似程序,以便基于观察来自ergodic Markov链的长度$ n $的轨迹来求近求解$ d -dimension的线性固定点方程。我们首先表现出$ t _ {\ mathrm {mix}} \ tfrac {n}} \ tfrac {n}} \ tfrac {d}} \ tfrac {d} {n} $的非渐近性界限。$ t _ {\ mathrm {mix $是混合时间。然后,我们证明了一种在适当平均迭代序列上的非渐近实例依赖性,具有匹配局部渐近最小的限制的领先术语,包括对参数$的敏锐依赖(d,t _ {\ mathrm {mix}}) $以高阶术语。我们将这些上限与非渐近Minimax的下限补充,该下限是建立平均SA估计器的实例 - 最优性。我们通过Markov噪声的政策评估导出了这些结果的推导 - 覆盖了所有$ \ lambda \中的TD($ \ lambda $)算法,以便[0,1)$ - 和线性自回归模型。我们的实例依赖性表征为HyperParameter调整的细粒度模型选择程序的设计开放了门(例如,在运行TD($ \ Lambda $)算法时选择$ \ lambda $的值)。
translated by 谷歌翻译
联邦平均(FedAVG),也称为本地SGD,是联邦学习中最受欢迎的算法之一(FL)。尽管其简单和普及,但到目前为止,FADVG的收敛速率尚未确定。即使在最简单的假设(凸,平滑,均匀和有界协方差)下,最着名的上限和下限也不匹配,目前尚不清楚现有分析是否捕获算法的容量。在这项工作中,我们首先通过为FedAVG提供与现有的上限相匹配的下限来解决这个问题,这表明现有的FADVG上限分析不可易于解决。另外,我们在异构环境中建立一个下限,几乎与现有的上限相匹配。虽然我们的下限显示了FEDAVG的局限性,但在额外的三阶平滑度下,我们证明了更乐观的最先进的收敛导致凸和非凸面设置。我们的分析源于我们呼叫迭代偏置的概念,这由SGD轨迹的期望从具有相同初始化的无噪声梯度下降轨迹的偏差来定义。我们在此数量上证明了新颖的尖锐边界,并直观地显示了如何从随机微分方程(SDE)的角度来分析该数量。
translated by 谷歌翻译
我们研究了一类算法,用于在内部级别物镜强烈凸起时求解随机和确定性设置中的彼此优化问题。具体地,我们考虑基于不精确的隐含区分的算法,并且我们利用热门开始策略来摊销精确梯度的估计。然后,我们介绍了一个统一的理论框架,受到奇异的扰动系统(Habets,1974)的研究来分析这种摊销算法。通过使用此框架,我们的分析显示了匹配可以访问梯度无偏见估计的Oracle方法的计算复杂度的算法,从而优于彼此优化的许多现有结果。我们在合成实验中说明了这些发现,并展示了这些算法对涉及几千个变量的超参数优化实验的效率。
translated by 谷歌翻译
我们研究了Adagrad-norm的收敛速率,作为自适应随机梯度方法(SGD)的典范,其中,基于观察到的随机梯度的步骤大小变化,以最大程度地减少非凸,平稳的目标。尽管它们很受欢迎,但在这种情况下,对自适应SGD的分析滞后于非自适应方法。具体而言,所有先前的作品都依赖以下假设的某个子集:(i)统一结合的梯度规范,(ii)均匀遇到的随机梯度方差(甚至噪声支持),(iii)步骤大小和随机性之间的有条件独立性坡度。在这项工作中,我们表明Adagrad-norm表现出$ \ Mathcal {O} \ left(\ frac {\ mathrm {poly} \ log(t)} {\ sqrt {\ sqrt {t}}} \ right)的订单最佳收敛率$在$ t $迭代之后,在与最佳调整的非自适应SGD(无界梯度规范和仿射噪声方差缩放)相同的假设下进行了$,而无需任何调整参数。因此,我们确定自适应梯度方法在比以前了解的更广泛的方案中表现出最佳的融合。
translated by 谷歌翻译
从数据中学习的方法取决于各种类型的调整参数,例如惩罚强度或步长大小。由于性能可以在很大程度上取决于这些参数,因此重要的是要比较估算器的类别 - 考虑规定的有限调谐参数集,而不是特别调谐的方法。在这项工作中,我们通过同类中最佳方法的相对性能研究方法类。我们考虑了线性回归的中心问题,即随机的各向同性地面真理,并研究了两种基本方法的估计性能,即梯度下降和脊回归。我们公布以下现象。 (1)对于一般设计,当经验数据协方差矩阵衰减的特征值缓慢,作为指数较不小于统一的功率定律时,恒定的梯度下降优于山脊回归。相反,如果特征值迅速衰减,则作为指数大于统一或指数的权力定律,我们表明山脊回归优于梯度下降。 (2)对于正交设计,我们计算了确切的最小值最佳估计器类别(达到最低最大最大最佳),这表明它等同于具有衰减学习率的梯度下降。我们发现山脊回归和梯度下降的次数均具有恒定的步长。我们的结果表明,统计性能可以在很大程度上取决于调整参数。特别是,虽然最佳调谐脊回归是我们设置中的最佳估计器,但当仅在有限的许多正则化参数上调整两种方法时,它可以用任意/无界数量的梯度下降来表现优于梯度下降。
translated by 谷歌翻译
我们研究了线性函数近似的政策评估问题,并且目前具有强烈的最优性保证的高效实用算法。我们首先通过证明在这个问题中建立基线的下限来建立基线和随机错误。特别是,我们在与转换内核的静止分布相关联的实例相关规范中证明了Oracle复杂性下限,并使用本地渐近最低限度机械在随机误差中证明依赖于随机误差的实例相关的下限IID观察模型。现有算法未能匹配这些下限中的至少一个:为了说明,我们分析了时间差异学习的方差减少变体,特别是它未能实现Oracle复杂性下限。为了解决这个问题,我们开发了加速,方差减少的快速时间差算法(VRFTD),其同时匹配两个下限,并达到实例 - 最优性的强烈概念。最后,我们将VRFTD算法扩展到Markovian观察的设置,并提供与I.I.D中的实例相关的收敛结果。设置到与链条的混合时间成比例的乘法因子。我们的理论保证最佳的最佳保证是通过数值实验证实的。
translated by 谷歌翻译