When people think of everyday things like an "egg," they typically have a mental image associated with it. This commonsense knowledge helps us understand how these everyday things work and how to interact with them. For example, when someone tries to make a fried egg, they know that it has a shell and that it can be cracked open to reveal the egg white and yolk inside. However, if a system does not have a coherent picture of such everyday things, thinking that the egg yolk surrounds the shell, then it might have to resort to ridiculous approaches such as trying to scrape the egg yolk off the shell into the pan. Do language models have a coherent picture of such everyday things? To investigate this, we propose a benchmark dataset consisting of 100 everyday things, their parts, and the relationships between these parts. We observe that state-of-the-art pre-trained language models (LMs) like GPT-3 and Macaw have fragments of knowledge about these entities, but they fail to produce consistent parts mental models. We propose a simple extension to these LMs where we apply a constraint satisfaction layer on top of raw predictions from LMs to produce more consistent and accurate parts mental models of everyday things.
translated by 谷歌翻译
语言模型(LMS)在多大程度上在答案时在多大程度上建立场景的“心理模型”(例如,关于特定伦理困境的问题)?虽然认知科学表明,心理模型在人类问题解决中发挥着基本作用,但目前尚不清楚现有LMS的高问答性能是由类似的模型建设进行支持 - 如果不是,那是否可以解释他们众所周知的灾难性的失败。我们观察到Magaw是一种现有的基于T5的LM,当探测时提供了一些有用但是情境问题的有用但不足的心理模型(估计精度= 43%,有用= 21%,一致性= 42%)。我们提出梦想,一种采用情境问题作为输入,以产生精神模型的表现,没有任何其他任务的心理模型培训数据。它通过来自现有NLP资源的遥远监督来继承其社会型号。我们的分析显示,与金刚鹦鹉相比,梦想可以产生明显更好的精神模型(估计精度= 67%,有用= 37%,一致性= 71%)。最后,梦想生成的心理模型可以用作情境QA任务的其他背景。此附加上下文将MACAW零拍摄模型的答案精度提高到三个不同数据集上的+ 1%和+ 4%(绝对)。
translated by 谷歌翻译
符号知识图(kgs)是通过昂贵的人众包或特定于域特异性的复杂信息提取管道来构建的。诸如BERT之类的新兴大型语言模型(LMS)已显示出隐式编码的大量知识,可以使用正确设计的提示来查询。但是,与明确的公斤相比,黑盒LMS中的知识通常很难访问或编辑,并且缺乏解释性。在这项工作中,我们旨在从LMS收获符号KG,这是一个由神经LMS的灵活性和可扩展性增强的自动kg构造的新框架。与通常依赖大型人类注释的数据或现有大量KG的先前作品相比,我们的方法仅需要对关系的最小定义作为输入,因此适合于以前无法提取有关丰富新关系的知识。该方法会自动生成多样化的提示,并在给定的LM内执行有效的知识搜索,以进行一致和广泛的输出。与以前的方法相比,使用我们的方法收获的知识要准确得多,如自动和人类评估所示。结果,我们源于多元化的LMS,一个新的KG家族(例如Bertnet和Robertanet),其中包含一套更丰富的常识关系,包括复杂的关系(例如,A对B的能力,但不擅长B”)人类注销的kg(例如概念网)。此外,由此产生的kg也是解释各自的源LMS的工具,从而导致对不同LMS不同知识能力的新见解。
translated by 谷歌翻译
近年来带来了对自然语言理解领域的勤义代表和推理的重新兴趣。新的致辞知识图表(CSKG)的发展是这些进步的核心,因为他们的不同事实可以通过机器学习模型来解决新的和具有挑战性的任务。与此同时,由于全面地涵盖了一般勤杂朗知识所需的大规模规模,对这些资源的质量和覆盖率仍存在疑问。在这项工作中,我们将手动构建的CSKGS分配在NLP代理商遇到的所有情况下,我们将永远不会实现适用所需的覆盖范围。因此,我们提出了一种新的评估框架,用于测试KGS的效用,基于如何从中学习有效的隐式知识表示。通过这一新目标,我们提出了一个含有知识的全新CSKG的新CSKG,该知识不容易获得预用的语言模型。我们与其他领先的CSKG相比,评估其属性,表现了对勤杂朗语言知识资源的第一个大规模对研究。接下来,我们显示原子2020更适合培训知识模型,可以为新的,看不见的实体和事件产生准确,代表知识。最后,通过人类评估,我们表明,尽管使用超过430倍的参数,但GPT-3(175B参数)的几次射击性能较低,而令人印象深刻,令人印象深刻,令人印象深刻,令人印象深刻,仍然低于原子型2020的巴特的知识模型。
translated by 谷歌翻译
语言模型(LMS)已被证明在各种下游应用程序中很有用,例如摘要,翻译,问答和文本分类。由于它们可以存储的大量信息,LMS正在成为人工智能中越来越重要的工具。在这项工作中,我们提出了道具(提示为探测),该道具利用GPT-3(最初由OpenAI在2020年提出的大型语言模型)来执行知识基础构建任务(KBC)。 Prop实施了一种多步骤方法,该方法结合了各种提示技术来实现这一目标。我们的结果表明,手动提示策划是必不可少的,必须鼓励LM给出可变长度的答案集,特别是包括空的答案集,True/False问题是提高LM生成的建议精度的有用设备。 LM的大小是至关重要的因素,并且实体字典别名提高了LM评分。我们的评估研究表明,这些提出的技术可以大大提高最终预测的质量:Prop赢得了LM-KBC竞争的轨道2,表现优于基线36.4个百分点。我们的实施可在https://github.com/hemile/iswc-challenge上获得。
translated by 谷歌翻译
When answering a question, people often draw upon their rich world knowledge in addition to the particular context. Recent work has focused primarily on answering questions given some relevant document or context, and required very little general background. To investigate question answering with prior knowledge, we present COMMONSENSEQA: a challenging new dataset for commonsense question answering. To capture common sense beyond associations, we extract from CON-CEPTNET (Speer et al., 2017) multiple target concepts that have the same semantic relation to a single source concept. Crowd-workers are asked to author multiple-choice questions that mention the source concept and discriminate in turn between each of the target concepts. This encourages workers to create questions with complex semantics that often require prior knowledge. We create 12,247 questions through this procedure and demonstrate the difficulty of our task with a large number of strong baselines. Our best baseline is based on BERT-large (Devlin et al., 2018) and obtains 56% accuracy, well below human performance, which is 89%.
translated by 谷歌翻译
抽象推理是智能系统的关键能力。大型语言模型在抽象推理任务上实现了高度的性能,但表现出许多缺陷。但是,人类的抽象推理也是不完美的,并且取决于我们对推理问题内容的知识和信念。例如,人类对在日常情况下基于逻辑规则的逻辑规则比关于抽象属性的任意规则更可靠地理解。语言模型的培训经验类似地赋予了他们先前的期望,这些期望反映了人类的知识和信念。因此,我们假设语言模型会显示出类似人类的内容对抽象推理问题的影响。我们在三个逻辑推理任务中探讨了这一假设:自然语言推论,判断三段论的逻辑有效性和ison选择任务(Wason,1968)。我们发现,最新的大语言模型(具有7或700亿个参数; Hoffman等,2022)反映了这些任务中人类在人类中观察到的许多相同模式 - 像人类一样,模型对可信情况的理由更有效地理由不现实或抽象的。我们的发现对理解这些认知效应以及有助于语言模型表现的因素具有影响。
translated by 谷歌翻译
Many real-world applications of language models (LMs), such as code autocomplete and writing assistance, involve human-LM interaction, but the main LM benchmarks are non-interactive, where a system produces output without human intervention. To evaluate human-LM interaction, we develop a framework, Human-AI Language-based Interaction Evaluation (H-LINE), that expands non-interactive evaluation along three dimensions, capturing (i) the interactive process, not only the final output; (ii) the first-person subjective experience, not just a third-party assessment; and (iii) notions of preference beyond quality. We then design five tasks ranging from goal-oriented to open-ended to capture different forms of interaction. On four state-of-the-art LMs (three variants of OpenAI's GPT-3 and AI21's J1-Jumbo), we find that non-interactive performance does not always result in better human-LM interaction and that first-person and third-party metrics can diverge, suggesting the importance of examining the nuances of human-LM interaction.
translated by 谷歌翻译
Reasoning, as an essential ability for complex problem-solving, can provide back-end support for various real-world applications, such as medical diagnosis, negotiation, etc. This paper provides a comprehensive survey of cutting-edge research on reasoning with language model prompting. We introduce research works with comparisons and summaries and provide systematic resources to help beginners. We also discuss the potential reasons for emerging such reasoning abilities and highlight future research directions.
translated by 谷歌翻译
Language models (LMs) are trained on collections of documents, written by individual human agents to achieve specific goals in an outside world. During training, LMs have access only to text of these documents, with no direct evidence of the internal states of the agents that produced them -- a fact often used to argue that LMs are incapable of modeling goal-directed aspects of human language production and comprehension. Can LMs trained on text learn anything at all about the relationship between language and use? I argue that LMs are models of intentional communication in a specific, narrow sense. When performing next word prediction given a textual context, an LM can infer and represent properties of an agent likely to have produced that context. These representations can in turn influence subsequent LM generation in the same way that agents' communicative intentions influence their language. I survey findings from the recent literature showing that -- even in today's non-robust and error-prone models -- LMs infer and use representations of fine-grained communicative intentions and more abstract beliefs and goals. Despite the limited nature of their training data, they can thus serve as building blocks for systems that communicate and act intentionally.
translated by 谷歌翻译
我们介绍了Sparrow,这是一个寻求信息的对话代理,与提示的语言模型基线相比,训练有素,更有帮助,正确和无害。我们使用从人类反馈中的强化学习来培训我们的模型,以帮助人类评估者判断代理人的行为。首先,为了使我们的代理人更有帮助和无害,我们将良好对话的要求分解为代理人应遵循的自然语言规则,并分别向评估者询问每个规则。我们证明,这种崩溃使我们能够收集对代理行为的更多针对性的人类判断,并允许更有效的规则条件奖励模型。其次,我们的代理商在收集对模型声明的偏好判决时提供了支持事实主张的来源的证据。对于事实问题,麻雀提供的证据支持了78%的时间。比基线比基线更享受麻雀,同时对人类的对抗性探测更具弹性,在探测时只有8%的时间违反了我们的规则。最后,我们进行了广泛的分析,表明尽管我们的模型学会遵守我们的规则,但它可以表现出分布偏见。
translated by 谷歌翻译
神经网络语言模型的最新进展表明,通过利用大规模自然语言数据中的语言关联来得出表达意义表示。这些潜在的格式塔表示已实现许多实际应用的最新性能。看来我们正处于经验得出强大而表达的可计算语义的途径。出现的一个关键问题是,仅语言数据才能使计算机能够理解有关物理世界的必要真相?必须关注这个问题,因为我们与智能机器的未来相互作用取决于我们的技术正确地表示和处理人类通常观察到的概念(对象,属性和过程)。在审查了现有协议之后,这项工作的目的是使用新颖且严格控制的推理测试探索这个问题,并突出显示哪些模型可能直接从纯语言数据中学习。
translated by 谷歌翻译
Recent work has presented intriguing results examining the knowledge contained in language models (LM) by having the LM fill in the blanks of prompts such as "Obama is a by profession". These prompts are usually manually created, and quite possibly suboptimal; another prompt such as "Obama worked as a " may result in more accurately predicting the correct profession. Because of this, given an inappropriate prompt, we might fail to retrieve facts that the LM does know, and thus any given prompt only provides a lower bound estimate of the knowledge contained in an LM. In this paper, we attempt to more accurately estimate the knowledge contained in LMs by automatically discovering better prompts to use in this querying process. Specifically, we propose mining-based and paraphrasing-based methods to automatically generate high-quality and diverse prompts, as well as ensemble methods to combine answers from different prompts. Extensive experiments on the LAMA benchmark for extracting relational knowledge from LMs demonstrate that our methods can improve accuracy from 31.1% to 39.6%, providing a tighter lower bound on what LMs know. We have released the code and the resulting LM Prompt And Query Archive (LPAQA) at https://github. com/jzbjyb/LPAQA.1 Some models we use in this paper, e.g. BERT (Devlin et al., 2019), are bi-directional, and do not directly define probability distribution over text, which is the underlying definition of an LM. Nonetheless, we call them LMs for simplicity.
translated by 谷歌翻译
随着人工智能系统变得越来越强大和普遍,人们对机器的道德或缺乏道德的关注变得越来越关注。然而,向机器讲授道德是一项艰巨的任务,因为道德仍然是人类中最激烈的争论问题之一,更不用说AI了。但是,部署到数百万用户的现有AI系统已经在做出充满道德影响的决策,这构成了一个看似不可能的挑战:教学机器的道德意义,而人类继续努力努力。为了探索这一挑战,我们介绍了Delphi,这是一个基于深层神经网络的实验框架,直接训练了描述性道德判断,例如,“帮助朋友”通常是不错的,而“帮助朋友传播假新闻”不是。经验结果提供了对机器伦理的承诺和局限性的新见解。面对新的道德情况,德尔菲(Delphi)表现出强大的概括能力,而现成的神经网络模型表现出明显差的判断,包括不公正的偏见,证实了对明确教学机器的道德意义的必要性。然而,德尔菲并不完美,表现出对普遍性偏见和不一致的敏感性。尽管如此,我们还是展示了不完美的Delphi的积极用例,包括在其他不完美的AI系统中将其用作组件模型。重要的是,我们根据著名的道德理论来解释Delphi的运营化,这使我们提出了重要的未来研究问题。
translated by 谷歌翻译
关于概念及其属性的常识知识(CSK)有助于AI应用程序。诸如ConceptNet之类的先前作品已经编译了大型CSK集合。但是,它们的表现力限制在主题性 - 预处理(SPO)的三联元中,对p和o的s和字符串的简单概念。与先前的作品相比,CSK断言具有精致的表现力和更好的精度和回忆。 Ascent ++通过用子组和方面捕获复合概念,以及用语义方面的主张来捕获复合概念。后者对于表达断言和进一步预选赛的时间和空间有效性至关重要。此外,Ascent ++将开放信息提取(OpenIE)与典型性和显着性分数的明智清洁和排名相结合。对于高覆盖范围,我们的方法挖掘到具有广泛的Web内容的大规模爬网C4中。通过人类判断的评估显示了上升++ Kb的卓越质量,以及对QA支持任务的外部评估强调了Ascent ++的好处。可以在https://ascentpp.mpi-inf.mpg.de/上访问Web界面,数据和代码。
translated by 谷歌翻译
The common practice for training commonsense models has gone from-human-to-corpus-to-machine: humans author commonsense knowledge graphs in order to train commonsense models. In this work, we investigate an alternative, from-machine-to-corpus-to-machine: general language models author these commonsense knowledge graphs to train commonsense models. Our study leads to a new framework, Symbolic Knowledge Distillation. As with prior art in Knowledge Distillation (Hinton et al., 2015), our approach uses larger models to teach smaller models. A key difference is that we distill knowledge symbolically-as text-in addition to the neural model. We also distill only one aspect-the commonsense of a general language model teacher, allowing the student to be a different type, a commonsense model. Altogether, we show that careful prompt engineering and a separately trained critic model allow us to selectively distill high-quality causal commonsense from GPT-3, a general language model. Empirical results demonstrate that, for the first time, a human-authored commonsense knowledge graph is surpassed by our automatically distilled variant in all three criteria: quantity, quality, and diversity. In addition, it results in a neural commonsense model that surpasses the teacher model's commonsense capabilities despite its 100x smaller size. We apply this to the ATOMIC resource, and share our new symbolic knowledge graph and commonsense models.
translated by 谷歌翻译
This paper investigates models of event implications. Specifically, how well models predict entity state-changes, by targeting their understanding of physical attributes. Nominally, Large Language models (LLM) have been exposed to procedural knowledge about how objects interact, yet our benchmarking shows they fail to reason about the world. Conversely, we also demonstrate that existing approaches often misrepresent the surprising abilities of LLMs via improper task encodings and that proper model prompting can dramatically improve performance of reported baseline results across multiple tasks. In particular, our results indicate that our prompting technique is especially useful for unseen attributes (out-of-domain) or when only limited data is available.
translated by 谷歌翻译
Pre-trained language models, despite their rapid advancements powered by scale, still fall short of robust commonsense capabilities. And yet, scale appears to be the winning recipe; after all, the largest models seem to have acquired the largest amount of commonsense capabilities. Or is it? In this paper, we investigate the possibility of a seemingly impossible match: can smaller language models with dismal commonsense capabilities (i.e., GPT-2), ever win over models that are orders of magnitude larger and better (i.e., GPT-3), if the smaller models are powered with novel commonsense distillation algorithms? The key intellectual question we ask here is whether it is possible, if at all, to design a learning algorithm that does not benefit from scale, yet leads to a competitive level of commonsense acquisition. In this work, we study the generative models of commonsense knowledge, focusing on the task of generating generics, statements of commonsense facts about everyday concepts, e.g., birds can fly. We introduce a novel commonsense distillation framework, I2D2, that loosely follows the Symbolic Knowledge Distillation of West et al. but breaks the dependence on the extreme-scale models as the teacher model by two innovations: (1) the novel adaptation of NeuroLogic Decoding to enhance the generation quality of the weak, off-the-shelf language models, and (2) self-imitation learning to iteratively learn from the model's own enhanced commonsense acquisition capabilities. Empirical results suggest that scale is not the only way, as novel algorithms can be a promising alternative. Moreover, our study leads to a new corpus of generics, Gen-A-Tomic, that is of the largest and highest quality available to date.
translated by 谷歌翻译
Recent progress in pretraining language models on large textual corpora led to a surge of improvements for downstream NLP tasks. Whilst learning linguistic knowledge, these models may also be storing relational knowledge present in the training data, and may be able to answer queries structured as "fillin-the-blank" cloze statements. Language models have many advantages over structured knowledge bases: they require no schema engineering, allow practitioners to query about an open class of relations, are easy to extend to more data, and require no human supervision to train. We present an in-depth analysis of the relational knowledge already present (without fine-tuning) in a wide range of state-of-theart pretrained language models. We find that (i) without fine-tuning, BERT contains relational knowledge competitive with traditional NLP methods that have some access to oracle knowledge, (ii) BERT also does remarkably well on open-domain question answering against a supervised baseline, and (iii) certain types of factual knowledge are learned much more readily than others by standard language model pretraining approaches. The surprisingly strong ability of these models to recall factual knowledge without any fine-tuning demonstrates their potential as unsupervised open-domain QA systems. The code to reproduce our analysis is available at https: //github.com/facebookresearch/LAMA.
translated by 谷歌翻译
预训练的语言模型(PTLM)已显示出在自然语言任务上表现良好。许多先前的作品都以通过知识图(KGS)标记的关系链接的实体的形式利用结构性常识来协助PTLM。检索方法使用kg作为单独的静态模块,该模块限制了覆盖范围,因为kgs包含有限的知识。生成方法训练PTLMS kg三倍以提高获得知识的规模。但是,对符号KG实体的培训限制了其在涉及自然语言文本的任务中的适用性,在这些任务中,它们忽略了整体上下文。为了减轻这种情况,我们提出了一个以句子为条件的常识性上下文化器(COSE-CO)作为输入,以使其在生成与输入文本的整体上下文相关的任务中通常可用。为了训练Cose-Co,我们提出了一个新的数据集,其中包括句子和常识知识对。 COSE-CO推断出的知识是多种多样的,并且包含了基础KG中不存在的新实体。我们增强了在多选质量质量检查和开放式常识性推理任务中产生的知识,从而改善了CSQA,ARC,QASC和OBQA数据集的当前最佳方法。我们还展示了其在改善释义生成任务的基线模型方面的适用性。
translated by 谷歌翻译