本文认为,考虑了深神经网络(DNN)训练中最佳梯度无损压缩的问题。渐变压缩在许多分布式DNN培训方案中是相关的,包括最近流行的联合学习(FL)场景,其中每个远程用户通过无噪声限制通道连接到参数服务器(PS)。在分布式DNN培训中,如果可用的底层梯度分布,则可以使用经典的无损压缩方法来减少传送渐变条目所需的比特数。平均场分析表明,梯度更新可以被认为是独立的随机变量,而拉普拉斯近似可以用来争论梯度具有近似于某些制度中的正常(范数)分布的分布。在本文中,我们认为,对于某些实际兴趣的网络,梯度条目可以很好地建模为具有广义的正常(Gennorm)分布。我们提供了数值评估,以验证假设进流模型提供了对DNN梯度尾部分布的更准确的预测。此外,在将诸如Huffman编码的经典修复到可变无损编码算法应用于量化的梯度更新,该建模选择在梯度的无损压缩方面提供了具体的改进。后一种结果确实提供了一种有效的压缩策略,具有较低的内存和计算复杂性,在分布式DNN培训场景中具有很大的实际相关性。
translated by 谷歌翻译
在本章中,我们将主要关注跨无线设备的协作培训。培训ML模型相当于解决优化问题,并且在过去几十年中已经开发了许多分布式优化算法。这些分布式ML算法提供数据局部性;也就是说,可以协同地培训联合模型,而每个参与设备的数据仍然是本地的数据。这个地址,一些延伸,隐私问题。它们还提供计算可扩展性,因为它们允许利用分布在许多边缘设备的计算资源。然而,在实践中,这不会直接导致整体学习速度的线性增益与设备的数量。这部分是由于通信瓶颈限制了整体计算速度。另外,无线设备在其计算能力中具有高度异构,并且它们的计算速度和通信速率都可能由于物理因素而高度变化。因此,考虑到时变通信网络的影响以及器件的异构和随机计算能力,必须仔细设计分布式学习算法,特别是在无线网络边缘实现的算法。
translated by 谷歌翻译
在本文中,我们提出了一种由量化压缩感测的通信高效的联合学习框架。呈现的框架包括用于参数服务器(PS)的无线设备和梯度重建的梯度压缩。我们对梯度压缩的策略是顺序执行块稀疏,尺寸减小和量化。由于梯度稀疏和量化,我们的策略可以实现比单位梯度压缩更高的压缩比。为了从PS的压缩信号中精确聚集局部梯度,我们使用期望最大化通用近似消息传递(EM-GAMP)算法来提出梯度重建的近似最小均方误差(MMSE)方法。假设Bernoulli高斯 - 混合的先前,该算法迭代地更新来自压缩信号的局部梯度的后均值和方差。我们还为梯度重建呈现出低复杂性的方法。在这种方法中,我们使用Bussgang定理来从压缩信号聚合本地梯度,然后使用EM-GAMP算法计算聚合梯度的近似MMSE估计。我们还提供了所提出的框架的收敛速度分析。使用Mnist DataSet,我们证明所呈现的框架几乎可以使用不执行压缩的情况实现几乎相同的性能,同时显着降低联合学习的通信开销。
translated by 谷歌翻译
由于客户端的通信资源有限和大量的模型参数,大规模分布式学习任务遭受通信瓶颈。梯度压缩是通过传输压缩梯度来减少通信负载的有效方法。由于在随机梯度下降的情况下,相邻轮的梯度可能具有高相关,因为他们希望学习相同的模型,提出了一种用于联合学习的实用梯度压缩方案,它使用历史梯度来压缩梯度并且基于Wyner-Ziv编码但没有任何概率的假设。我们还在实时数据集上实现了我们的渐变量化方法,我们的方法的性能优于前一个方案。
translated by 谷歌翻译
联合学习可以使远程工作人员能够协作培训共享机器学习模型,同时允许在本地保持训练数据。在无线移动设备的用例中,由于功率和带宽有限,通信开销是关键瓶颈。前工作已经利用了各种数据压缩工具,例如量化和稀疏,以减少开销。在本文中,我们提出了一种用于联合学习的预测编码的压缩方案。该方案在所有设备中具有共享预测功能,并且允许每个工作人员发送来自参考的压缩残余矢量。在每个通信中,我们基于速率失真成本选择预测器和量化器,并进一步降低熵编码的冗余。广泛的模拟表明,与其他基线方法相比,甚至更好的学习性能,通信成本可以减少高达99%。
translated by 谷歌翻译
随着数据生成越来越多地在没有连接连接的设备上进行,因此与机器学习(ML)相关的流量将在无线网络中无处不在。许多研究表明,传统的无线协议高效或不可持续以支持ML,这创造了对新的无线通信方法的需求。在这项调查中,我们对最先进的无线方法进行了详尽的审查,这些方法是专门设计用于支持分布式数据集的ML服务的。当前,文献中有两个明确的主题,模拟的无线计算和针对ML优化的数字无线电资源管理。这项调查对这些方法进行了全面的介绍,回顾了最重要的作品,突出了开放问题并讨论了应用程序方案。
translated by 谷歌翻译
联合学习(FL)是使用Edge设备上可能可用的私人数据训练机器学习模型的新兴范式。 FL的分布式操作引起了集中式机器学习中未遇到的挑战,包括需要保留本地数据集的隐私以及由于重复交换更新模型而导致的通信负载。这些挑战通常通过引起更新模型的某些失真的技术来单独解决,例如当地差异隐私(LDP)机制和有损压缩。在这项工作中,我们提出了一种方法创造的联合隐私增强和量化(JOPEQ),该隐私和量化共同实现了FL环境中的有损压缩和隐私增强。特别是,Jopeq利用基于随机晶格的矢量量化,这是一种通用压缩技术,其副产品失真在统计学上等同于加性噪声。通过使用专用的多元隐私保护噪声来增强模型更新,可以利用这种失真来增强隐私。我们表明,JOPEQ在持有所需的隐私级别的同时,根据所需的比特率同时量化数据,而不会特别影响学习模型的实用性。这是通过分析的LDP保证,失真和收敛范围的推导以及数值研究所示的。最后,我们从经验上断言,乔普克(Jopeq)拆除了已知的普通攻击,以利用隐私泄漏。
translated by 谷歌翻译
迄今为止,通信系统主要旨在可靠地交流位序列。这种方法提供了有效的工程设计,这些设计对消息的含义或消息交换所旨在实现的目标不可知。但是,下一代系统可以通过将消息语义和沟通目标折叠到其设计中来丰富。此外,可以使这些系统了解进行交流交流的环境,从而为新颖的设计见解提供途径。本教程总结了迄今为止的努力,从早期改编,语义意识和以任务为导向的通信开始,涵盖了基础,算法和潜在的实现。重点是利用信息理论提供基础的方法,以及学习在语义和任务感知通信中的重要作用。
translated by 谷歌翻译
我们检查了通过直播(OTA)聚合的联合学习(FL),移动用户(MUS)旨在借助聚合本地梯度的参数服务器(PS)在全球模型上达成共识。在OTA FL中,MUS在每个训练回合中使用本地数据训练他们的模型,并以未编码的方式使用相同的频带同时传输其梯度。根据超级梯度的接收信号,PS执行全局模型更新。尽管OTA FL的通信成本显着降低,但它容易受到不利的通道影响和噪声的影响。在接收器侧采用多个天线可以减少这些效果,但是对于远离PS的用户来说,路径损失仍然是一个限制因素。为了改善此问题,在本文中,我们提出了一种基于无线的层次FL方案,该方案使用中间服务器(ISS)在MUS更密集的区域形成簇。我们的计划利用OTA群集聚合与MUS与其相应的IS进行交流,而OTA全球聚合从ISS到PS。我们提出了针对所提出算法的收敛分析,并通过对使用ISS的衍生分析表达式和实验结果的数值评估显示,与单独使用较少的传输功率相比,利用ISS的结果比单独的OTA FL具有更快的收敛性和更好的性能。我们还使用不同数量的群集迭代以及不同数据集和数据分布来验证性能的结果。我们得出的结论是,群集聚集的最佳选择取决于MUS和集群之间的数据分布。
translated by 谷歌翻译
与训练数据中心的训练传统机器学习(ML)模型相反,联合学习(FL)训练ML模型,这些模型在资源受限的异质边缘设备上包含的本地数据集上。现有的FL算法旨在为所有参与的设备学习一个单一的全球模型,这对于所有参与培训的设备可能没有帮助,这是由于整个设备的数据的异质性。最近,Hanzely和Richt \'{A} Rik(2020)提出了一种新的配方,以培训个性化的FL模型,旨在平衡传统的全球模型与本地模型之间的权衡,该模型可以使用其私人数据对单个设备进行培训只要。他们得出了一种称为无环梯度下降(L2GD)的新算法,以解决该算法,并表明该算法会在需要更多个性化的情况下,可以改善沟通复杂性。在本文中,我们为其L2GD算法配备了双向压缩机制,以进一步减少本地设备和服务器之间的通信瓶颈。与FL设置中使用的其他基于压缩的算法不同,我们的压缩L2GD算法在概率通信协议上运行,在概率通信协议中,通信不会按固定的时间表进行。此外,我们的压缩L2GD算法在没有压缩的情况下保持与香草SGD相似的收敛速率。为了验证算法的效率,我们在凸和非凸问题上都进行了多种数值实验,并使用各种压缩技术。
translated by 谷歌翻译
在线联合学习(OFL)是一个有前途的框架,可以协作学习一系列非线性功能(或模型),从分布式流数据传入到多个客户端,同时保留其本地数据的隐私。在此框架中,我们首先通过将在线梯度下降(OGD)纳入事实汇总方法(命名为fedAvg),首先构建一种香草方法(命名为ofedavg)。尽管具有最佳的渐近性能,但OFEDAVG还是遭受了大量的沟通开销和长期学习延迟。为了解决这些缺点,我们通过随机量化和间歇性传播提出了一种通信效率OFL算法(命名为OfeDQIT)。我们对理论上的主要贡献是证明,超过$ t $ time插槽可以实现最佳的sublinear遗憾绑定$ \ mathcal {o} {o}(\ sqrt {t})$用于任何真实数据(包括非IID数据),同时大大降低沟通开销。此外,即使在网络中一次参与网络中的一小部分客户(处理时间更快和高质量的通信渠道),仍然可以保证这种最优性。我们的分析表明,OFEDQIT成功地解决了OFEDAVG的缺点,同时保持了卓越的学习准确性。使用真实数据集的实验证明了我们的算法对各种在线分类和回归任务的有效性。
translated by 谷歌翻译
In recent years, mobile devices are equipped with increasingly advanced sensing and computing capabilities. Coupled with advancements in Deep Learning (DL), this opens up countless possibilities for meaningful applications, e.g., for medical purposes and in vehicular networks. Traditional cloudbased Machine Learning (ML) approaches require the data to be centralized in a cloud server or data center. However, this results in critical issues related to unacceptable latency and communication inefficiency. To this end, Mobile Edge Computing (MEC) has been proposed to bring intelligence closer to the edge, where data is produced. However, conventional enabling technologies for ML at mobile edge networks still require personal data to be shared with external parties, e.g., edge servers. Recently, in light of increasingly stringent data privacy legislations and growing privacy concerns, the concept of Federated Learning (FL) has been introduced. In FL, end devices use their local data to train an ML model required by the server. The end devices then send the model updates rather than raw data to the server for aggregation. FL can serve as an enabling technology in mobile edge networks since it enables the collaborative training of an ML model and also enables DL for mobile edge network optimization. However, in a large-scale and complex mobile edge network, heterogeneous devices with varying constraints are involved. This raises challenges of communication costs, resource allocation, and privacy and security in the implementation of FL at scale. In this survey, we begin with an introduction to the background and fundamentals of FL. Then, we highlight the aforementioned challenges of FL implementation and review existing solutions. Furthermore, we present the applications of FL for mobile edge network optimization. Finally, we discuss the important challenges and future research directions in FL.
translated by 谷歌翻译
联合学习(FL)引发了高通信开销,这可以通过压缩模型更新而大大缓解。然而,网络环境中压缩和模型精度之间的权衡仍不清楚,为简单起见,大多数实现仅采用固定压缩率。在本文中,我们首次系统地检查了该权衡,识别压缩误差对最终模型精度的影响,相对于学习率。具体而言,我们将每个全局迭代的压缩误差因其强大凸面和非凸损耗下的收敛速度分析。然后,我们通过策略性地调整每次迭代中的压缩速率来提高最终模型精度来最大化最终模型精度的适应框架。我们讨论了具有代表压缩算法的实用网络中框架的关键实施问题。对流行的MNIST和CIFAR-10数据集的实验证实,我们的解决方案有效地降低了网络流量,但在FL中保持了高模型精度。
translated by 谷歌翻译
联合学习(FL)使多个设备能够在不共享其个人数据的情况下协作学习全局模型。在现实世界应用中,不同的各方可能具有异质数据分布和有限的通信带宽。在本文中,我们有兴趣提高FL系统的通信效率。我们根据梯度规范的重要性调查和设计设备选择策略。特别是,我们的方法包括在每个通信轮中选择具有最高梯度值的最高规范的设备。我们研究了这种选择技术的收敛性和性能,并将其与现有技术进行比较。我们用非IID设置执行几个实验。结果显示了我们的方法的收敛性,与随机选择比较的测试精度相当大。
translated by 谷歌翻译
在本文中,我们研究了启用高速雾无线电访问网络(F-RAN)中的内容受欢迎程度预测问题。为了以高准确性和低复杂性预测内容的流行,我们提出了基于高斯流程的回归器,以模拟内容请求模式。首先,我们提出的模型捕获了内容特征和受欢迎程度之间的关系。然后,我们利用贝叶斯学习来训练模型参数,这对于过度拟合非常可靠。但是,贝叶斯方法通常无法找到后验分布的闭合形式表达。为了解决此问题,我们采用随机方差降低梯度哈密顿蒙特卡洛(SVRG-HMC)方法来近似后验分布。为了利用其他FOG接入点(F-AP)的计算资源并减少开销的通信,我们提出了一个量化的联合学习(FL)框架与贝叶斯学习相结合。量化的联合贝叶斯学习框架允许每个F-AP在量化和编码后将梯度发送到云服务器。它可以有效地实现预测准确性和通信间接费用之间的权衡。仿真结果表明,我们提出的政策的绩效优于现有政策。
translated by 谷歌翻译
Federated Learning (FL) is a collaborative machine learning (ML) framework that combines on-device training and server-based aggregation to train a common ML model among distributed agents. In this work, we propose an asynchronous FL design with periodic aggregation to tackle the straggler issue in FL systems. Considering limited wireless communication resources, we investigate the effect of different scheduling policies and aggregation designs on the convergence performance. Driven by the importance of reducing the bias and variance of the aggregated model updates, we propose a scheduling policy that jointly considers the channel quality and training data representation of user devices. The effectiveness of our channel-aware data-importance-based scheduling policy, compared with state-of-the-art methods proposed for synchronous FL, is validated through simulations. Moreover, we show that an "age-aware" aggregation weighting design can significantly improve the learning performance in an asynchronous FL setting.
translated by 谷歌翻译
分布式学习的主要重点之一是沟通效率,因为每一轮训练的模型聚集可能包括数百万到数十亿个参数。已经提出了几种模型压缩方法,例如梯度量化和稀疏方法,以提高模型聚合的通信效率。但是,对于给定梯度估计器的给定扭曲的信息理论的最低通信成本仍然未知。在本文中,我们研究了从率延伸的角度研究分布式学习中模型聚集的基本限制。通过将模型聚合作为矢量高斯首席执行官问题,我们得出了模型聚合问题的速率区域和总成绩 - 距离函数,这揭示了在特定梯度失真上限处的最小通信速率。我们还根据现实世界数据集的梯度统计数据,分析了每次迭代和总通信成本的通信成本和总通信成本。发现通过利用工人节点之间的相关性来获得沟通增益,对于符号来说是显着的,并且梯度估计器的高扭曲可以实现梯度压缩中的较低总通信成本。
translated by 谷歌翻译
联合学习(FL)是一个新的人工智能概念,它使得互联网(IoT)设备能够学习协作模型,而无需将原始数据发送到集中的节点进行处理。尽管有许多优势,但在物联网设备上的计算资源较低,交换模型参数的高通信成本使得FL在大型物联网网络中的应用非常有限。在这项工作中,我们为非常大的物联网网络开发了一种新型的FL压缩方案,称为高压联合学习(HCFL)。 HCFL可以减少FL过程的数据负载,而无需更改其结构和超参数。通过这种方式,我们不仅可以显着降低沟通成本,而且使密集学习过程更适应低计算资源的物联网设备。此外,我们研究了IoT设备数量与FL模型的收敛水平之间的关系,从而更好地评估了FL过程的质量。我们在模拟和数学分析中演示了HCFL方案。我们提出的理论研究可以用作最低满意度的水平,证明在满足确定的配置时,FL过程可以实现良好的性能。因此,我们表明HCFL适用于具有许多物联网设备的任何FLENTECTED网络。
translated by 谷歌翻译
为了满足下一代无线通信网络的极其异构要求,研究界越来越依赖于使用机器学习解决方案进行实时决策和无线电资源管理。传统的机器学习采用完全集中的架构,其中整个培训数据在一个节点上收集,即云服务器,显着提高了通信开销,并提高了严重的隐私问题。迄今为止,最近提出了作为联合学习(FL)称为联合学习的分布式机器学习范式。在FL中,每个参与边缘设备通过使用自己的培训数据列举其本地模型。然后,通过无线信道,本地训练模型的权重或参数被发送到中央ps,聚合它们并更新全局模型。一方面,FL对优化无线通信网络的资源起着重要作用,另一方面,无线通信对于FL至关重要。因此,FL和无线通信之间存在“双向”关系。虽然FL是一个新兴的概念,但许多出版物已经在FL的领域发表了发布及其对下一代无线网络的应用。尽管如此,我们注意到没有任何作品突出了FL和无线通信之间的双向关系。因此,本调查纸的目的是通过提供关于FL和无线通信之间的相互依存性的及时和全面的讨论来弥合文学中的这种差距。
translated by 谷歌翻译
通过增加无线设备的计算能力,以及用户和设备生成的数据的前所未有的级别,已经出现了新的分布式机器学习(ML)方法。在无线社区中,由于其通信效率及其处理非IID数据问题的能力,联邦学习(FL)特别有趣。可以通过称为空中计算(AIRCOMP)的无线通信方法加速FL训练,其利用同时上行链路传输的干扰以有效地聚合模型更新。但是,由于Aircomp利用模拟通信,因此它引入了不可避免的估计错误。在本文中,我们研究了这种估计误差对FL的收敛性的影响,并提出了一种改进资源受限无线网络的方法的转移。首先,我们通过静态通道重新传输获得最佳Aircomp电源控制方案。然后,我们调查了传递的空中流体的性能,并在流失函数上找到两个上限。最后,我们提出了一种选择最佳重传的启发式,可以在训练ML模型之前计算。数值结果表明,引入重传可能导致ML性能提高,而不会在通信或计算方面产生额外的成本。此外,我们为我们的启发式提供了模拟结果,表明它可以正确地确定不同无线网络设置和机器学习问题的最佳重传次数。
translated by 谷歌翻译