Data-centric AI has shed light on the significance of data within the machine learning (ML) pipeline. Acknowledging its importance, various research and policies are suggested by academia, industry, and government departments. Although the capability of utilizing existing data is essential, the capability to build a dataset has become more important than ever. In consideration of this trend, we propose a "Data Management Operation and Recipes" that will guide the industry regardless of the task or domain. In other words, this paper presents the concept of DMOps derived from real-world experience. By offering a baseline for building data, we want to help the industry streamline its data operation optimally.
translated by 谷歌翻译
在软件项目中引入机器学习(ML)组件创造了软件工程师与数据科学家和其他专家合作。虽然合作可以始终具有挑战性,但ML介绍了探索性模型开发过程的额外挑战,需要额外的技能和知识,测试ML系统的困难,需要连续演化和监测,以及非传统质量要求,如公平性和解释性。通过采访来自28个组织的45名从业者,我们确定了在建立和将ML系统部署到生产时面临的关键合作挑战。我们报告了生产ML系统的开发中的共同合作点,以获得要求,数据和集成以及相应的团队模式和挑战。我们发现,这些挑战中的大部分挑战围绕通信,文档,工程和流程以及收集建议以解决这些挑战。
translated by 谷歌翻译
以数据为中心的AI是AI社区的一个新的和令人兴奋的研究主题,但许多组织已经构建并维护了各种“以数据为中心的”应用程序,其目标是产生高质量数据。这些范围从传统的业务数据处理应用程序(例如,我们本月每个客户收费多少份数?“)向生产发动机等生产ML系统。近年来,数据和ML工程的领域是为了管理这些应用程序,而且都包括许多有趣的新颖工具和流程。在本文中,我们根据我们的体验数据和ML平台讨论了可能有趣的数据和ML工程,这些课程可以很有趣地应用于数据中心为中心的AI。
translated by 谷歌翻译
人工智能(AI)治理调节行使权威和控制AI的管理。它旨在通过有效利用数据并最大程度地减少与AI相关的成本和风险来利用AI。尽管AI治理和AI伦理等主题在理论,哲学,社会和监管层面上进行了详尽的讨论,但针对公司和公司的AI治理工作有限。这项工作将AI产品视为系统,在该系统中,通过机器学习(ML)模型(培训)数据传递关键功能。我们通过在AI和相关领域(例如ML)合成文献来得出一个概念框架。我们的框架将AI治理分解为数据的治理,(ML)模型和(AI)系统沿着四个维度。它与现有的IT和数据治理框架和实践有关。它可以由从业者和学者都采用。对于从业者来说,主要是研究论文的综合,但从业者的出版物和监管机构的出版物也为实施AI治理提供了宝贵的起点,而对于学者来说,该论文强调了许多AI治理领域,值得更多关注。
translated by 谷歌翻译
机器学习(ML)系统的开发和部署可以用现代工具轻松执行,但该过程通常是匆忙和意思是结束的。缺乏勤奋会导致技术债务,范围蠕变和未对准的目标,模型滥用和失败,以及昂贵的后果。另一方面,工程系统遵循明确定义的流程和测试标准,以简化高质量,可靠的结果的开发。极端是航天器系统,其中关键任务措施和鲁棒性在开发过程中根深蒂固。借鉴航天器工程和ML的经验(通过域名通过产品的研究),我们开发了一种经过验证的机器学习开发和部署的系统工程方法。我们的“机器学习技术准备水平”(MLTRL)框架定义了一个原则的过程,以确保强大,可靠和负责的系统,同时为ML工作流程流线型,包括来自传统软件工程的关键区别。 MLTRL甚至更多,MLTRL为跨团队和组织的人们定义了一个人工智能和机器学习技术的人员。在这里,我们描述了通过生产化和部署在医学诊断,消费者计算机视觉,卫星图像和粒子物理学等领域,以通过生产和部署在基本研究中开发ML方法的几个现实世界使用情况的框架和阐明。
translated by 谷歌翻译
如今,由于最近在人工智能(AI)和机器学习(ML)中的近期突破,因此,智能系统和服务越来越受欢迎。然而,机器学习不仅满足软件工程,不仅具有有希望的潜力,而且还具有一些固有的挑战。尽管最近的一些研究努力,但我们仍然没有明确了解开发基于ML的申请和当前行业实践的挑战。此外,目前尚不清楚软件工程研究人员应将其努力集中起来,以更好地支持ML应用程序开发人员。在本文中,我们报告了一个旨在了解ML应用程序开发的挑战和最佳实践的调查。我们合成从80名从业者(以不同的技能,经验和应用领域)获得的结果为17个调查结果;概述ML应用程序开发的挑战和最佳实践。参与基于ML的软件系统发展的从业者可以利用总结最佳实践来提高其系统的质量。我们希望报告的挑战将通知研究界有关需要调查的主题,以改善工程过程和基于ML的申请的质量。
translated by 谷歌翻译
负责任的AI被广泛认为是我们时代最大的科学挑战之一,也是释放AI市场并增加采用率的关键。为了应对负责任的AI挑战,最近已经发布了许多AI伦理原则框架,AI系统应该符合这些框架。但是,没有进一步的最佳实践指导,从业者除了真实性之外没有什么。同样,在算法级别而不是系统级的算法上进行了重大努力,主要集中于数学无关的道德原则(例如隐私和公平)的一部分。然而,道德问题在开发生命周期的任何步骤中都可能发生,从而超过AI算法和模型以外的系统的许多AI,非AI和数据组件。为了从系统的角度操作负责任的AI,在本文中,我们采用了一种面向模式的方法,并根据系统的多媒体文献综述(MLR)的结果提出了负责任的AI模式目录。与其呆在道德原则层面或算法层面上,我们专注于AI系统利益相关者可以在实践中采取的模式,以确保开发的AI系统在整个治理和工程生命周期中负责。负责的AI模式编目将模式分为三组:多层次治理模式,可信赖的过程模式和负责任的逐设计产品模式。这些模式为利益相关者实施负责任的AI提供了系统性和可行的指导。
translated by 谷歌翻译
通过整合人类的知识和经验,人在循环旨在以最低成本培训准确的预测模型。人类可以为机器学习应用提供培训数据,并直接完成在基于机器的方法中对管道中计算机中的难以实现的任务。在本文中,我们从数据的角度调查了人类循环的现有工作,并将它们分为三类具有渐进关系:(1)从数据处理中提高模型性能的工作,(2)通过介入模型培训提高模型性能,(3)系统的设计独立于循环的设计。使用上述分类,我们总结了该领域的主要方法;随着他们的技术优势/弱点以及自然语言处理,计算机愿景等的简单分类和讨论。此外,我们提供了一些开放的挑战和机遇。本调查打算为人类循环提供高级别的摘要,并激励有兴趣的读者,以考虑设计有效的循环解决方案的方法。
translated by 谷歌翻译
连续的软件工程在许多领域已变得司空见惯。但是,在调节需要考虑其他问题的密集部门时,通常认为很难采用连续的开发方法,例如DevOps。在本文中,我们提出了一种将拉力请求用作设计控件的方法,并将这种方法应用于认证的医疗系统中的机器学习,这是一种新颖的技术,这是一种新颖的技术,旨在为机器学习系统增加解释性,作为监管审核跟踪。我们以前曾使用过一种工业系统来证明这种方法,以证明如何以连续的方式开发医疗系统。
translated by 谷歌翻译
AI有可能通过实施高级自动化来改善人才管理的方法,从而实现动态规定。这项研究旨在确定开发面向AI的工件以解决人才管理问题的新要求。设计工件专注于增强专业评估和计划属性之间的互动,是一种智能的就业自动化解决方案,用于职业指导,主要取决于人才智能模块和个人成长需求。采用了设计科学方法,用于通过结构化机器学习技术进行实验研究,这是通过提出的技术 - 组织 - 环境理论的拟议中的综合AI解决方案框架的主要要素。
translated by 谷歌翻译
期望与成功采用AI来创新和改善业务之间仍然存在很大的差距。由于深度学习的出现,AI的采用率更为复杂,因为它经常结合大数据和物联网,从而影响数据隐私。现有的框架已经确定需要专注于以人为中心的设计,结合技术和业务/组织的观点。但是,信任仍然是一个关键问题,需要从一开始就设计。拟议的框架从以人为本的设计方法扩展,强调和维持基于该过程的信任。本文提出了负责人工智能(AI)实施的理论框架。拟议的框架强调了敏捷共同创造过程的协同业务技术方法。目的是简化AI的采用过程来通过在整个项目中参与所有利益相关者来创新和改善业务,以便AI技术的设计,开发和部署与人合作而不是孤立。该框架对基于分析文献综述,概念框架设计和从业者的中介专业知识的负责人AI实施提出了新的观点。该框架强调在以人为以人为中心的设计和敏捷发展中建立和维持信任。这种以人为中心的方式与设计原则的隐私相符和启用。该技术和最终用户的创建者正在共同努力,为业务需求和人类特征定制AI解决方案。关于采用AI来协助医院计划的说明性案例研究将证明该拟议框架适用于现实生活中的应用。
translated by 谷歌翻译
生物医学图像分析算法验证取决于参考数据集的高质量注释,标记指令是关键。尽管它们的重要性,但他们的优化仍然没有得到探索。在这里,我们介绍了对标签指令及其对该领域注释质量的影响的首次系统研究。通过对Miccai协会注册的专业实践和国际比赛的全面检查,我们发现了注释者对标签说明的标签需求及其当前质量和可用性之间的差异。基于对156家专业公司的156个注释者和708个亚马逊机械土耳其人(MTURK)人群的注释者的14040张图像的分析,使用具有不同信息密度级别的说明,我们进一步发现,包括示例性图像与文本描述,唯一的描述,示例性图像显着增强了注释性能,虽然仅扩展文本说明并非如此。最后,专业注释者不断优于mturk人群。我们的研究提高了对生物医学图像分析标签指令中质量标准的需求的认识。
translated by 谷歌翻译
我们提出了一种新颖的三阶段查找解析标签工作流程,用于众包注释,以减少任务指令中的模糊性,从而提高注释质量。第1阶段(查找)询问人群找到其正确标签似乎暧昧的任务指令的示例。还要求工人提供一个简短的标签,它描述了所发现的特定实例体现的模糊概念。我们比较这个阶段的合作与非协作设计。在第2阶段(解析)中,请求者选择一个或多个这些模糊的例子到标签(解析歧义)。新标签将自动注入任务说明,以提高清晰度。最后,在第3阶段(标签)中,工人使用经修订的指南进行实际注释,澄清示例。我们比较三个使用这些示例的设计:仅限示例,仅标记或两者。我们通过亚马逊机械土耳其报告六个任务设计中的图像标记实验。结果显示了有关众包注释任务的有效设计的提高的注释准确性和进一步的见解。
translated by 谷歌翻译
Data-centric artificial intelligence (data-centric AI) represents an emerging paradigm emphasizing that the systematic design and engineering of data is essential for building effective and efficient AI-based systems. The objective of this article is to introduce practitioners and researchers from the field of Information Systems (IS) to data-centric AI. We define relevant terms, provide key characteristics to contrast the data-centric paradigm to the model-centric one, and introduce a framework for data-centric AI. We distinguish data-centric AI from related concepts and discuss its longer-term implications for the IS community.
translated by 谷歌翻译
自动抄表技术尚未普遍。燃气,电或水积米读数主要由运营商或房主手动完成。在一些国家,操作员将拍照作为阅读证据,以通过与另一个运营商的离线检查和/或在发生冲突或投诉的情况下作为证据来确认阅读。整个过程是耗时,昂贵的,容易出错。自动化可以优化和促进这种劳动密集型和人类错误的过程。随着近期人工智能和计算机视野领域的进步,自动抄表系统比以往任何时候都变得越来越可行。最近在人工智能领域的近期进步,并受研究界的开源开放访问举措的启发,我们介绍了一个名为NRC-Gamma数据集的现实寿命燃气表图像的新型大型基准数据集。在2020年1月20日,在00:05 AM和11:59 PM之间,从Itron 400A隔膜煤气表收集数据。我们使用系统的方法来标记图像,验证标签,并确保注释的质量。数据集包含整个煤气表的28,883个图像以及左侧和右拨号显示器的57,766次裁剪图像。我们希望NRC-Gamma DataSet有助于研究界设计和实施准确,创新,智能,可重复的自动燃气表阅读解决方案。
translated by 谷歌翻译
社交媒体有可能提供有关紧急情况和突然事件的及时信息。但是,在每天发布的数百万帖子中找到相关信息可能很困难,并且开发数据分析项目通常需要时间和技术技能。这项研究提出了一种为分析社交媒体的灵活支持的方法,尤其是在紧急情况下。引入了可以采用社交媒体分析的不同用例,并讨论了从大量帖子中检索信息的挑战。重点是分析社交媒体帖子中包含的图像和文本,以及一组自动数据处理工具,用于过滤,分类和使用人类的方法来支持数据分析师的内容。这种支持包括配置自动化工具的反馈和建议,以及众包收集公民的投入。通过讨论Crowd4SDG H2020欧洲项目中开发的三个案例研究来验证结果。
translated by 谷歌翻译
在过去几年中的自然语言处理(NLP)研究的进展为自动用户交互或改进的数据分析提供了公司的新商业机会。建立复杂的NLP应用需要处理现代机器学习(ML)技术,从而阻碍企业建立成功的NLP项目。我们在应用NLP研究项目中的经验表明,具有质量保证的生产环境中的研究原型在生产环境中的不断整合在软件中建立了信任,并为业务目标提供了便利性和有用性。我们将印章4 NLP介绍为开发NLP应用程序的迭代和增量过程模型。通过邮票4 NLP,我们将软件工程原则与数据科学的最佳实践合并。实例化我们的流程模型允许通过利用模板,公约和实现,使开发人员和数据科学家专注于业务目标来有效地创建原型。由于我们的迭代 - 增量方法,企业可以在每次迭代后将增强版的原型版本部署到他们的软件环境中,最大限度地提高潜在的业务价值和信任,并避免成功的成本永不部署的实验。
translated by 谷歌翻译
即将开发我们呼叫所体现的系统的新一代越来越自主和自学习系统。在将这些系统部署到真实上下文中,我们面临各种工程挑战,因为它以有益的方式协调所体现的系统的行为至关重要,确保他们与我们以人为本的社会价值观的兼容性,并且设计可验证安全可靠的人类-Machine互动。我们正在争辩说,引发系统工程将来自嵌入到体现系统的温室,并确保动态联合的可信度,这种情况意识到的情境意识,意图,探索,探险,不断发展,主要是不可预测的,越来越自主的体现系统在不确定,复杂和不可预测的现实世界环境中。我们还识别了许多迫切性的系统挑战,包括可信赖的体现系统,包括强大而人为的AI,认知架构,不确定性量化,值得信赖的自融化以及持续的分析和保证。
translated by 谷歌翻译
As an important data selection schema, active learning emerges as the essential component when iterating an Artificial Intelligence (AI) model. It becomes even more critical given the dominance of deep neural network based models, which are composed of a large number of parameters and data hungry, in application. Despite its indispensable role for developing AI models, research on active learning is not as intensive as other research directions. In this paper, we present a review of active learning through deep active learning approaches from the following perspectives: 1) technical advancements in active learning, 2) applications of active learning in computer vision, 3) industrial systems leveraging or with potential to leverage active learning for data iteration, 4) current limitations and future research directions. We expect this paper to clarify the significance of active learning in a modern AI model manufacturing process and to bring additional research attention to active learning. By addressing data automation challenges and coping with automated machine learning systems, active learning will facilitate democratization of AI technologies by boosting model production at scale.
translated by 谷歌翻译
Practices in the built environment have become more digitalized with the rapid development of modern design and construction technologies. However, the requirement of practitioners or scholars to gather complicated professional knowledge in the built environment has not been satisfied yet. In this paper, more than 80,000 paper abstracts in the built environment field were obtained to build a knowledge graph, a knowledge base storing entities and their connective relations in a graph-structured data model. To ensure the retrieval accuracy of the entities and relations in the knowledge graph, two well-annotated datasets have been created, containing 2,000 instances and 1,450 instances each in 29 relations for the named entity recognition task and relation extraction task respectively. These two tasks were solved by two BERT-based models trained on the proposed dataset. Both models attained an accuracy above 85% on these two tasks. More than 200,000 high-quality relations and entities were obtained using these models to extract all abstract data. Finally, this knowledge graph is presented as a self-developed visualization system to reveal relations between various entities in the domain. Both the source code and the annotated dataset can be found here: https://github.com/HKUST-KnowComp/BEKG.
translated by 谷歌翻译