在本文中,我们研究了2D视图中3D场景几何分解和操纵的问题。通过利用最新的隐式神经表示技术,尤其是吸引人的神经辐射领域,我们引入了一个对象字段组件,以了解仅从2D监督的3D空间中所有单个对象的独特代码。该组件的关键是一系列精心设计的损失函数,以使每个3D点,尤其是在非占用空间中,即使没有3D标签,也可以有效地优化。此外,我们引入了一种反查询算法,以自由操纵学习的场景表示中的任何指定的3D对象形状。值得注意的是,我们的操纵算法可以明确解决关键问题,例如对象碰撞和视觉遮挡。我们的方法称为DM-NERF,是最早在单个管道中同时重建,分解,操纵和渲染复杂3D场景的方法之一。在三个数据集上进行的大量实验清楚地表明,我们的方法可以从2D视图中准确分解所有3D对象,从而允许在3D空间中自由操纵任何感兴趣的对象,例如翻译,旋转,尺寸调整和变形。
translated by 谷歌翻译
Photo-realistic free-viewpoint rendering of real-world scenes using classical computer graphics techniques is challenging, because it requires the difficult step of capturing detailed appearance and geometry models. Recent studies have demonstrated promising results by learning scene representations that implicitly encode both geometry and appearance without 3D supervision. However, existing approaches in practice often show blurry renderings caused by the limited network capacity or the difficulty in finding accurate intersections of camera rays with the scene geometry. Synthesizing high-resolution imagery from these representations often requires time-consuming optical ray marching. In this work, we introduce Neural Sparse Voxel Fields (NSVF), a new neural scene representation for fast and high-quality free-viewpoint rendering. NSVF defines a set of voxel-bounded implicit fields organized in a sparse voxel octree to model local properties in each cell. We progressively learn the underlying voxel structures with a diffentiable ray-marching operation from only a set of posed RGB images. With the sparse voxel octree structure, rendering novel views can be accelerated by skipping the voxels containing no relevant scene content. Our method is typically over 10 times faster than the state-of-the-art (namely, NeRF (Mildenhall et al., 2020)) at inference time while achieving higher quality results. Furthermore, by utilizing an explicit sparse voxel representation, our method can easily be applied to scene editing and scene composition. We also demonstrate several challenging tasks, including multi-scene learning, free-viewpoint rendering of a moving human, and large-scale scene rendering. Code and data are available at our website: https://github.com/facebookresearch/NSVF.
translated by 谷歌翻译
神经隐式表示在新的视图合成和来自多视图图像的高质量3D重建方面显示了其有效性。但是,大多数方法都集中在整体场景表示上,但忽略了其中的各个对象,从而限制了潜在的下游应用程序。为了学习对象组合表示形式,一些作品将2D语义图作为训练中的提示,以掌握对象之间的差异。但是他们忽略了对象几何和实例语义信息之间的牢固联系,这导致了单个实例的不准确建模。本文提出了一个新颖的框架ObjectsDF,以在3D重建和对象表示中构建具有高保真度的对象复合神经隐式表示。观察常规音量渲染管道的歧义,我们通过组合单个对象的签名距离函数(SDF)来对场景进行建模,以发挥明确的表面约束。区分不同实例的关键是重新审视单个对象的SDF和语义标签之间的牢固关联。特别是,我们将语义信息转换为对象SDF的函数,并为场景和对象开发统一而紧凑的表示形式。实验结果表明,ObjectSDF框架在表示整体对象组合场景和各个实例方面的优越性。可以在https://qianyiwu.github.io/objectsdf/上找到代码
translated by 谷歌翻译
Neural Radiance Fields (NeRFs) encode the radiance in a scene parameterized by the scene's plenoptic function. This is achieved by using an MLP together with a mapping to a higher-dimensional space, and has been proven to capture scenes with a great level of detail. Naturally, the same parameterization can be used to encode additional properties of the scene, beyond just its radiance. A particularly interesting property in this regard is the semantic decomposition of the scene. We introduce a novel technique for semantic soft decomposition of neural radiance fields (named SSDNeRF) which jointly encodes semantic signals in combination with radiance signals of a scene. Our approach provides a soft decomposition of the scene into semantic parts, enabling us to correctly encode multiple semantic classes blending along the same direction -- an impossible feat for existing methods. Not only does this lead to a detailed, 3D semantic representation of the scene, but we also show that the regularizing effects of the MLP used for encoding help to improve the semantic representation. We show state-of-the-art segmentation and reconstruction results on a dataset of common objects and demonstrate how the proposed approach can be applied for high quality temporally consistent video editing and re-compositing on a dataset of casually captured selfie videos.
translated by 谷歌翻译
Neural implicit 3D representations have emerged as a powerful paradigm for reconstructing surfaces from multiview images and synthesizing novel views. Unfortunately, existing methods such as DVR or IDR require accurate perpixel object masks as supervision. At the same time, neural radiance fields have revolutionized novel view synthesis. However, NeRF's estimated volume density does not admit accurate surface reconstruction. Our key insight is that implicit surface models and radiance fields can be formulated in a unified way, enabling both surface and volume rendering using the same model. This unified perspective enables novel, more efficient sampling procedures and the ability to reconstruct accurate surfaces without input masks. We compare our method on the DTU, BlendedMVS, and a synthetic indoor dataset. Our experiments demonstrate that we outperform NeRF in terms of reconstruction quality while performing on par with IDR without requiring masks.
translated by 谷歌翻译
Recent advances in neural radiance fields have enabled the high-fidelity 3D reconstruction of complex scenes for novel view synthesis. However, it remains underexplored how the appearance of such representations can be efficiently edited while maintaining photorealism. In this work, we present PaletteNeRF, a novel method for photorealistic appearance editing of neural radiance fields (NeRF) based on 3D color decomposition. Our method decomposes the appearance of each 3D point into a linear combination of palette-based bases (i.e., 3D segmentations defined by a group of NeRF-type functions) that are shared across the scene. While our palette-based bases are view-independent, we also predict a view-dependent function to capture the color residual (e.g., specular shading). During training, we jointly optimize the basis functions and the color palettes, and we also introduce novel regularizers to encourage the spatial coherence of the decomposition. Our method allows users to efficiently edit the appearance of the 3D scene by modifying the color palettes. We also extend our framework with compressed semantic features for semantic-aware appearance editing. We demonstrate that our technique is superior to baseline methods both quantitatively and qualitatively for appearance editing of complex real-world scenes.
translated by 谷歌翻译
我们提出了一个基于变压器的NERF(Transnerf),以学习在新视图合成任务的观察视图图像上进行的通用神经辐射场。相比之下,现有的基于MLP的NERF无法直接接收具有任意号码的观察视图,并且需要基于辅助池的操作来融合源视图信息,从而导致源视图与目标渲染视图之间缺少复杂的关系。此外,当前方法分别处理每个3D点,忽略辐射场场景表示的局部一致性。这些局限性可能会在挑战现实世界应用中降低其性能,在这些应用程序中可能存在巨大的差异和新颖的渲染视图之间的巨大差异。为了应对这些挑战,我们的Transnerf利用注意机制自然地将任意数量的源视图的深层关联解码为基于坐标的场景表示。在统一变压器网络中,在射线铸造空间和周围视图空间中考虑了形状和外观的局部一致性。实验表明,与基于图像的最先进的基于图像的神经渲染方法相比,我们在各种场景上接受过培训的Transnf可以在场景 - 敏捷和每个场景的燃烧场景中获得更好的性能。源视图与渲染视图之间的差距很大。
translated by 谷歌翻译
We present a method that achieves state-of-the-art results for synthesizing novel views of complex scenes by optimizing an underlying continuous volumetric scene function using a sparse set of input views. Our algorithm represents a scene using a fully-connected (nonconvolutional) deep network, whose input is a single continuous 5D coordinate (spatial location (x, y, z) and viewing direction (θ, φ)) and whose output is the volume density and view-dependent emitted radiance at that spatial location. We synthesize views by querying 5D coordinates along camera rays and use classic volume rendering techniques to project the output colors and densities into an image. Because volume rendering is naturally differentiable, the only input required to optimize our representation is a set of images with known camera poses. We describe how to effectively optimize neural radiance fields to render photorealistic novel views of scenes with complicated geometry and appearance, and demonstrate results that outperform prior work on neural rendering and view synthesis. View synthesis results are best viewed as videos, so we urge readers to view our supplementary video for convincing comparisons.
translated by 谷歌翻译
虚拟内容创建和互动在现代3D应用中起着重要作用,例如AR和VR。从真实场景中恢复详细的3D模型可以显着扩大其应用程序的范围,并在计算机视觉和计算机图形社区中进行了数十年的研究。我们提出了基于体素的隐式表面表示Vox-Surf。我们的Vox-Surf将空间分为有限的体素。每个体素将几何形状和外观信息存储在其角顶点。 Vox-Surf得益于从体素表示继承的稀疏性,几乎适用于任何情况,并且可以轻松地从多个视图图像中训练。我们利用渐进式训练程序逐渐提取重要体素,以进一步优化,以便仅保留有效的体素,从而大大减少了采样点的数量并增加了渲染速度。细素还可以视为碰撞检测的边界量。该实验表明,与其他方法相比,Vox-Surf表示可以学习精致的表面细节和准确的颜色,并以更少的记忆力和更快的渲染速度来学习。我们还表明,Vox-Surf在场景编辑和AR应用中可能更实用。
translated by 谷歌翻译
Point of View & TimeFigure 1: We propose D-NeRF, a method for synthesizing novel views, at an arbitrary point in time, of dynamic scenes with complex non-rigid geometries. We optimize an underlying deformable volumetric function from a sparse set of input monocular views without the need of ground-truth geometry nor multi-view images. The figure shows two scenes under variable points of view and time instances synthesised by the proposed model.
translated by 谷歌翻译
我们研究了从3D对象组成的场景的稀疏源观察的新型视图综合的问题。我们提出了一种简单但有效的方法,既不是持续的也不是隐含的,挑战近期观测综合的趋势。我们的方法将观察显式编码为启用摊销渲染的体积表示。我们证明,虽然由于其表现力,但由于其表现力,但由于其富有力的力量,我们的简单方法获得了与最新的基线的比较比较了与最先进的基线的相当甚至更好的新颖性重建质量,同时增加了渲染速度超过400倍。我们的模型采用类别无关方式培训,不需要特定于场景的优化。因此,它能够将新颖的视图合成概括为在训练期间未见的对象类别。此外,我们表明,通过简单的制定,我们可以使用视图综合作为自我监控信号,以便在没有明确的3D监督的情况下高效学习3D几何。
translated by 谷歌翻译
Neural Radiance Field (NeRF), a new novel view synthesis with implicit scene representation has taken the field of Computer Vision by storm. As a novel view synthesis and 3D reconstruction method, NeRF models find applications in robotics, urban mapping, autonomous navigation, virtual reality/augmented reality, and more. Since the original paper by Mildenhall et al., more than 250 preprints were published, with more than 100 eventually being accepted in tier one Computer Vision Conferences. Given NeRF popularity and the current interest in this research area, we believe it necessary to compile a comprehensive survey of NeRF papers from the past two years, which we organized into both architecture, and application based taxonomies. We also provide an introduction to the theory of NeRF based novel view synthesis, and a benchmark comparison of the performance and speed of key NeRF models. By creating this survey, we hope to introduce new researchers to NeRF, provide a helpful reference for influential works in this field, as well as motivate future research directions with our discussion section.
translated by 谷歌翻译
我们向渲染和时间(4D)重建人类的渲染和时间(4D)重建的神经辐射场,通过稀疏的摄像机捕获或甚至来自单眼视频。我们的方法将思想与神经场景表示,新颖的综合合成和隐式统计几何人称的人类表示相结合,耦合使用新颖的损失功能。在先前使用符号距离功能表示的结构化隐式人体模型,而不是使用统一的占用率来学习具有统一占用的光域字段。这使我们能够从稀疏视图中稳健地融合信息,并概括超出在训练中观察到的姿势或视图。此外,我们应用几何限制以共同学习观察到的主题的结构 - 包括身体和衣服 - 并将辐射场正规化为几何合理的解决方案。在多个数据集上的广泛实验证明了我们方法的稳健性和准确性,其概括能力显着超出了一系列的姿势和视图,以及超出所观察到的形状的统计外推。
translated by 谷歌翻译
由于真实的3D注释的类别数据的不可用,在合成数据集中,传统的学习3D对象类别的方法主要受到培训和评估。我们的主要目标是通过在与现有的合成对应物类似的幅度下收集现实世界数据来促进该领域的进步。因此,这项工作的主要贡献是一个大型数据集,称为3D中的常见对象,具有使用相机姿势和地面真相3D点云注释的对象类别的真实多视图图像。 DataSet总共包含从50 MS-Coco类别的近19,000个视频中捕获对象的150万帧,因此,在类别和对象的数量方面,它比替代更大。我们利用这款新数据集进行了几个新型综合和以类别为中心的3D重建方法的第一个大规模“野外”评估。最后,我们贡献了一种新型的神经渲染方法,它利用强大的变压器来重建对象,给出少量的视图。 CO3D DataSet可在HTTPS://github.com/facebookResearch/co3d获取。
translated by 谷歌翻译
Volumetric neural rendering methods like NeRF generate high-quality view synthesis results but are optimized per-scene leading to prohibitive reconstruction time. On the other hand, deep multi-view stereo methods can quickly reconstruct scene geometry via direct network inference. Point-NeRF combines the advantages of these two approaches by using neural 3D point clouds, with associated neural features, to model a radiance field. Point-NeRF can be rendered efficiently by aggregating neural point features near scene surfaces, in a ray marching-based rendering pipeline. Moreover, Point-NeRF can be initialized via direct inference of a pre-trained deep network to produce a neural point cloud; this point cloud can be finetuned to surpass the visual quality of NeRF with 30X faster training time. Point-NeRF can be combined with other 3D reconstruction methods and handles the errors and outliers in such methods via a novel pruning and growing mechanism. The experiments on the DTU, the NeRF Synthetics , the ScanNet and the Tanks and Temples datasets demonstrate Point-NeRF can surpass the existing methods and achieve the state-of-the-art results.
translated by 谷歌翻译
综合照片 - 现实图像和视频是计算机图形的核心,并且是几十年的研究焦点。传统上,使用渲染算法(如光栅化或射线跟踪)生成场景的合成图像,其将几何形状和材料属性的表示为输入。统称,这些输入定义了实际场景和呈现的内容,并且被称为场景表示(其中场景由一个或多个对象组成)。示例场景表示是具有附带纹理的三角形网格(例如,由艺术家创建),点云(例如,来自深度传感器),体积网格(例如,来自CT扫描)或隐式曲面函数(例如,截短的符号距离)字段)。使用可分辨率渲染损耗的观察结果的这种场景表示的重建被称为逆图形或反向渲染。神经渲染密切相关,并将思想与经典计算机图形和机器学习中的思想相结合,以创建用于合成来自真实观察图像的图像的算法。神经渲染是朝向合成照片现实图像和视频内容的目标的跨越。近年来,我们通过数百个出版物显示了这一领域的巨大进展,这些出版物显示了将被动组件注入渲染管道的不同方式。这种最先进的神经渲染进步的报告侧重于将经典渲染原则与学习的3D场景表示结合的方法,通常现在被称为神经场景表示。这些方法的一个关键优势在于它们是通过设计的3D-一致,使诸如新颖的视点合成捕获场景的应用。除了处理静态场景的方法外,我们还涵盖了用于建模非刚性变形对象的神经场景表示...
translated by 谷歌翻译
最近,神经隐式渲染技术已经迅速发展,并在新型视图合成和3D场景重建中显示出很大的优势。但是,用于编辑目的的现有神经渲染方法提供了有限的功能,例如刚性转换,或不适用于日常生活中的一般物体的细粒度编辑。在本文中,我们通过编码神经隐性字段,并在网格顶点上编码神经隐式字段,并在网格顶点上编码纹理代码,从而促进了一组编辑功能,包括网格引导的几何形状编辑,指定的纹理编辑,纹理交换,纹理交换,,纹理交换,,纹理编辑,,纹理编辑,,纹理编辑,,纹理编辑,,纹理编辑,,纹理编辑,,纹理编辑,,纹理编辑。填充和绘画操作。为此,我们开发了几种技术,包括可学习的符号指标,以扩大基于网格的表示,蒸馏和微调机制的空间区分性,以稳定地收敛,以及空间感知的优化策略,以实现精确的纹理编辑。关于真实和合成数据的广泛实验和编辑示例都证明了我们方法在表示质量和编辑能力上的优越性。代码可在项目网页上找到:https://zju3dv.github.io/neumesh/。
translated by 谷歌翻译
我们解决了从由一个未知照明条件照射的物体的多视图图像(及其相机姿势)从多视图图像(和它们的相机姿势)恢复物体的形状和空间变化的空间变化的问题。这使得能够在任意环境照明下呈现对象的新颖视图和对象的材料属性的编辑。我们呼叫神经辐射分解(NERFVERTOR)的方法的关键是蒸馏神经辐射场(NERF)的体积几何形状[MILDENHALL等人。 2020]将物体表示为表面表示,然后在求解空间改变的反射率和环境照明时共同细化几何形状。具体而言,Nerfactor仅使用重新渲染丢失,简单的光滑度Provers以及从真实学中学到的数据驱动的BRDF而无任何监督的表面法线,光可视性,Albedo和双向反射率和双向反射分布函数(BRDF)的3D神经领域-world brdf测量。通过显式建模光可视性,心脏请能够将来自Albedo的阴影分离,并在任意照明条件下合成现实的软或硬阴影。 Nerfactor能够在这场具有挑战性和实际场景的挑战和捕获的捕获设置中恢复令人信服的3D模型进行令人满意的3D模型。定性和定量实验表明,在各种任务中,内容越优于基于经典和基于深度的学习状态。我们的视频,代码和数据可在peoptom.csail.mit.edu/xiuming/projects/nerfactor/上获得。
translated by 谷歌翻译
我们提出了一种新的方法来获取来自在线图像集合的对象表示,从具有不同摄像机,照明和背景的照片捕获任意物体的高质量几何形状和材料属性。这使得各种以各种对象渲染应用诸如新颖的综合,致密和协调的背景组合物,从疯狂的内部输入。使用多级方法延伸神经辐射场,首先推断表面几何形状并优化粗估计的初始相机参数,同时利用粗糙的前景对象掩模来提高训练效率和几何质量。我们还介绍了一种强大的正常估计技术,其消除了几何噪声的效果,同时保持了重要细节。最后,我们提取表面材料特性和环境照明,以球形谐波表示,具有处理瞬态元素的延伸部,例如,锋利的阴影。这些组件的结合导致高度模块化和有效的对象采集框架。广泛的评估和比较证明了我们在捕获高质量的几何形状和外观特性方面的方法,可用于渲染应用。
translated by 谷歌翻译
Input: 3 views of held-out scene NeRF pixelNeRF Output: Rendered new views Input Novel views Input Novel views Input Novel views Figure 1: NeRF from one or few images. We present pixelNeRF, a learning framework that predicts a Neural Radiance Field (NeRF) representation from a single (top) or few posed images (bottom). PixelNeRF can be trained on a set of multi-view images, allowing it to generate plausible novel view synthesis from very few input images without test-time optimization (bottom left). In contrast, NeRF has no generalization capabilities and performs poorly when only three input views are available (bottom right).
translated by 谷歌翻译