使用加强,监督和无监督学习培训的人工神经系统培训全部获取高维输入的内部表示。这些表现在多大程度上取决于不同的学习目标在很大程度上是未知的。在这里,我们将八个不同的卷积神经网络学到的表示,每个都具有相同的reset架构,并在同一个自我图像的图像上培训,而是嵌入在不同的学习系统中。具体地,培训表示以在复合增强学习任务中引导动作;预测三个与监督有三个任务相关目标的组合;或者使用三种不同无监督的目标之一。使用代表性相似性分析,我们发现,通过加强学习培训的网络与其他网络的不同之处不同。通过进一步的分析,使用由神经科学文献的灵感的度量,我们发现用加强学习训练的模型具有稀疏和高维表示,其中单个图像用非常不同的神经活动模式表示。进一步的分析表明,这些陈述可能出现,以指导在RL代理中的长期行为和目标寻求。我们的结果提供了探讨神经表征的特性如何受目标职能影响,并可以告知转移学习方法。
translated by 谷歌翻译
尽管深度强化学习(RL)最近取得了许多成功,但其方法仍然效率低下,这使得在数据方面解决了昂贵的许多问题。我们的目标是通过利用未标记的数据中的丰富监督信号来进行学习状态表示,以解决这一问题。本文介绍了三种不同的表示算法,可以访问传统RL算法使用的数据源的不同子集使用:(i)GRICA受到独立组件分析(ICA)的启发,并训练深层神经网络以输出统计独立的独立特征。输入。 Grica通过最大程度地减少每个功能与其他功能之间的相互信息来做到这一点。此外,格里卡仅需要未分类的环境状态。 (ii)潜在表示预测(LARP)还需要更多的上下文:除了要求状态作为输入外,它还需要先前的状态和连接它们的动作。该方法通过预测当前状态和行动的环境的下一个状态来学习状态表示。预测器与图形搜索算法一起使用。 (iii)重新培训通过训练深层神经网络来学习国家表示,以学习奖励功能的平滑版本。该表示形式用于预处理输入到深度RL,而奖励预测指标用于奖励成型。此方法仅需要环境中的状态奖励对学习表示表示。我们发现,每种方法都有其优势和缺点,并从我们的实验中得出结论,包括无监督的代表性学习在RL解决问题的管道中可以加快学习的速度。
translated by 谷歌翻译
AI的一个关键挑战是构建体现的系统,该系统在动态变化的环境中运行。此类系统必须适应更改任务上下文并持续学习。虽然标准的深度学习系统实现了最先进的静态基准的结果,但它们通常在动态方案中挣扎。在这些设置中,来自多个上下文的错误信号可能会彼此干扰,最终导致称为灾难性遗忘的现象。在本文中,我们将生物学启发的架构调查为对这些问题的解决方案。具体而言,我们表明树突和局部抑制系统的生物物理特性使网络能够以特定于上下文的方式动态限制和路由信息。我们的主要贡献如下。首先,我们提出了一种新颖的人工神经网络架构,该架构将活跃的枝形和稀疏表示融入了标准的深度学习框架中。接下来,我们在需要任务的适应性的两个单独的基准上研究这种架构的性能:Meta-World,一个机器人代理必须学习同时解决各种操纵任务的多任务强化学习环境;和一个持续的学习基准,其中模型的预测任务在整个训练中都会发生变化。对两个基准的分析演示了重叠但不同和稀疏的子网的出现,允许系统流动地使用最小的遗忘。我们的神经实现标志在单一架构上第一次在多任务和持续学习设置上取得了竞争力。我们的研究揭示了神经元的生物学特性如何通知深度学习系统,以解决通常不可能对传统ANN来解决的动态情景。
translated by 谷歌翻译
这篇综述解决了在深度强化学习(DRL)背景下学习测量数据的抽象表示的问题。尽管数据通常是模棱两可,高维且复杂的解释,但许多动态系统可以通过一组低维状态变量有效地描述。从数据中发现这些状态变量是提高数据效率,稳健性和DRL方法的概括,应对维度的诅咒以及将可解释性和见解带入Black-Box DRL的关键方面。这篇综述通过描述用于学习世界的学习代表的主要深度学习工具,提供对方法和原则的系统观点,总结应用程序,基准和评估策略,并讨论开放的方式,从而提供了DRL中无监督的代表性学习的全面概述,挑战和未来的方向。
translated by 谷歌翻译
无监督的视觉表示学习提供了一个机会,可以利用大型无标记轨迹的大型语料库形成有用的视觉表示,这可以使强化学习(RL)算法的培训受益。但是,评估此类表示的适应性需要培训RL算法,该算法在计算上是密集型且具有较高的差异结果。为了减轻此问题,我们为无监督的RL表示方案设计了一个评估协议,其差异较低,计算成本降低了600倍。受愿景社区的启发,我们提出了两个线性探测任务:预测在给定状态下观察到的奖励,并预测特定状态下专家的行动。这两个任务通常适用于许多RL域,我们通过严格的实验表明,它们与Atari100k基准的实际下游控制性能密切相关。这提供了一种更好的方法,可以探索预处理算法的空间,而无需为每个设置运行RL评估。利用这一框架,我们进一步改善了RL的现有自学学习(SSL)食谱,突出了前向模型的重要性,视觉骨架的大小以及无监督目标的精确配方。
translated by 谷歌翻译
这是一门专门针对STEM学生开发的介绍性机器学习课程。我们的目标是为有兴趣的读者提供基础知识,以在自己的项目中使用机器学习,并将自己熟悉术语作为进一步阅读相关文献的基础。在这些讲义中,我们讨论受监督,无监督和强化学习。注释从没有神经网络的机器学习方法的说明开始,例如原理分析,T-SNE,聚类以及线性回归和线性分类器。我们继续介绍基本和先进的神经网络结构,例如密集的进料和常规神经网络,经常性的神经网络,受限的玻尔兹曼机器,(变性)自动编码器,生成的对抗性网络。讨论了潜在空间表示的解释性问题,并使用梦和对抗性攻击的例子。最后一部分致力于加强学习,我们在其中介绍了价值功能和政策学习的基本概念。
translated by 谷歌翻译
人类可以通过最小的相互干扰连续学习几项任务,但一次接受多个任务进行培训时的表现较差。标准深神经网络相反。在这里,我们提出了针对人工神经网络的新型计算限制,灵感来自灵长类动物前额叶皮层的较​​早作品,以捕获交织训练的成本,并允许网络在不忘记的情况下按顺序学习两个任务。我们通过两个算法主题,所谓的“呆滞”任务单元和HEBBIAN训练步骤增强了标准随机梯度下降,该步骤加强了任务单元和编码与任务相关信息的隐藏单元之间的连接。我们发现,“缓慢”的单元在培训期间引入了转换成本,该单元在交错训练下偏向表示的表示,而忽略了上下文提示的联合表示,而Hebbian步骤则促进了从任务单元到隐藏层的门控方案的形成这会产生正交表示,完全防止干扰。在先前发布的人类行为数据上验证该模型表明,它与接受过封锁或交错课程训练的参与者的表现相匹配,并且这些绩效差异是由真实类别边界的误解驱动的。
translated by 谷歌翻译
基于模型的强化学习的关键承诺之一是使用世界内部模型拓展到新颖的环境和任务中的预测。然而,模型的代理商的泛化能力尚不清楚,因为现有的工作在基准测试概括时专注于无模型剂。在这里,我们明确测量模型的代理的泛化能力与其无模型对应物相比。我们专注于Muzero(Schrittwieser等,2020),强大的基于模型的代理商的分析,并评估其在过程和任务泛化方面的性能。我们确定了一个程序概括规划,自我监督代表学习和程序数据分集的三个因素 - 并表明通过组合这些技术,我们实现了普通的最先进的概括性和数据效率(Cobbe等人。,2019)。但是,我们发现这些因素并不总是为Meta-World中的任务泛化基准提供相同的益处(Yu等人,2019),表明转移仍然是一个挑战,可能需要不同的方法而不是程序泛化。总的来说,我们建议建立一个推广的代理需要超越单任务,无模型范例,并朝着在丰富,程序,多任务环境中培训的基于自我监督的模型的代理。
translated by 谷歌翻译
Deep reinforcement learning is poised to revolutionise the field of AI and represents a step towards building autonomous systems with a higher level understanding of the visual world. Currently, deep learning is enabling reinforcement learning to scale to problems that were previously intractable, such as learning to play video games directly from pixels. Deep reinforcement learning algorithms are also applied to robotics, allowing control policies for robots to be learned directly from camera inputs in the real world. In this survey, we begin with an introduction to the general field of reinforcement learning, then progress to the main streams of value-based and policybased methods. Our survey will cover central algorithms in deep reinforcement learning, including the deep Q-network, trust region policy optimisation, and asynchronous advantage actor-critic. In parallel, we highlight the unique advantages of deep neural networks, focusing on visual understanding via reinforcement learning. To conclude, we describe several current areas of research within the field.
translated by 谷歌翻译
Advances in reinforcement learning (RL) often rely on massive compute resources and remain notoriously sample inefficient. In contrast, the human brain is able to efficiently learn effective control strategies using limited resources. This raises the question whether insights from neuroscience can be used to improve current RL methods. Predictive processing is a popular theoretical framework which maintains that the human brain is actively seeking to minimize surprise. We show that recurrent neural networks which predict their own sensory states can be leveraged to minimise surprise, yielding substantial gains in cumulative reward. Specifically, we present the Predictive Processing Proximal Policy Optimization (P4O) agent; an actor-critic reinforcement learning agent that applies predictive processing to a recurrent variant of the PPO algorithm by integrating a world model in its hidden state. P4O significantly outperforms a baseline recurrent variant of the PPO algorithm on multiple Atari games using a single GPU. It also outperforms other state-of-the-art agents given the same wall-clock time and exceeds human gamer performance on multiple games including Seaquest, which is a particularly challenging environment in the Atari domain. Altogether, our work underscores how insights from the field of neuroscience may support the development of more capable and efficient artificial agents.
translated by 谷歌翻译
Current learning machines have successfully solved hard application problems, reaching high accuracy and displaying seemingly "intelligent" behavior. Here we apply recent techniques for explaining decisions of state-of-the-art learning machines and analyze various tasks from computer vision and arcade games. This showcases a spectrum of problem-solving behaviors ranging from naive and short-sighted, to wellinformed and strategic. We observe that standard performance evaluation metrics can be oblivious to distinguishing these diverse problem solving behaviors. Furthermore, we propose our semi-automated Spectral Relevance Analysis that provides a practically effective way of characterizing and validating the behavior of nonlinear learning machines. This helps to assess whether a learned model indeed delivers reliably for the problem that it was conceived for. Furthermore, our work intends to add a voice of caution to the ongoing excitement about machine intelligence and pledges to evaluate and judge some of these recent successes in a more nuanced manner.
translated by 谷歌翻译
Humans and animals have the ability to continually acquire, fine-tune, and transfer knowledge and skills throughout their lifespan. This ability, referred to as lifelong learning, is mediated by a rich set of neurocognitive mechanisms that together contribute to the development and specialization of our sensorimotor skills as well as to long-term memory consolidation and retrieval. Consequently, lifelong learning capabilities are crucial for computational systems and autonomous agents interacting in the real world and processing continuous streams of information. However, lifelong learning remains a long-standing challenge for machine learning and neural network models since the continual acquisition of incrementally available information from non-stationary data distributions generally leads to catastrophic forgetting or interference. This limitation represents a major drawback for state-of-the-art deep neural network models that typically learn representations from stationary batches of training data, thus without accounting for situations in which information becomes incrementally available over time. In this review, we critically summarize the main challenges linked to lifelong learning for artificial learning systems and compare existing neural network approaches that alleviate, to different extents, catastrophic forgetting. Although significant advances have been made in domain-specific learning with neural networks, extensive research efforts are required for the development of robust lifelong learning on autonomous agents and robots. We discuss well-established and emerging research motivated by lifelong learning factors in biological systems such as structural plasticity, memory replay, curriculum and transfer learning, intrinsic motivation, and multisensory integration.
translated by 谷歌翻译
我们研究自我监督学习(SSL)是否可以从像素中改善在线增强学习(RL)。我们扩展了对比度增强学习框架(例如卷曲),该框架共同优化了SSL和RL损失,并进行了大量的实验,并具有各种自我监督的损失。我们的观察结果表明,现有的RL的SSL框架未能在使用相同数量的数据和增强时利用图像增强来实现对基准的有意义的改进。我们进一步执行进化搜索,以找到RL的多个自我监督损失的最佳组合,但是发现即使是这种损失组合也无法有意义地超越仅利用精心设计的图像增强的方法。通常,在现有框架下使用自制损失降低了RL性能。我们在多个不同环境中评估了该方法,包括现实世界的机器人环境,并确认没有任何单一的自我监督损失或图像增强方法可以主导所有环境,并且当前的SSL和RL联合优化框架是有限的。最后,我们从经验上研究了SSL + RL的预训练框架以及使用不同方法学到的表示的特性。
translated by 谷歌翻译
Transformer在学习视觉和语言表示方面取得了巨大的成功,这在各种下游任务中都是一般的。在视觉控制中,可以在不同控制任务之间转移的可转移状态表示对于减少训练样本量很重要。但是,将变压器移植到样品有效的视觉控制仍然是一个具有挑战性且未解决的问题。为此,我们提出了一种新颖的控制变压器(CTRLFORMER),具有先前艺术所没有的许多吸引人的好处。首先,CTRLFORMER共同学习视觉令牌和政策令牌之间的自我注意事项机制,在不同的控制任务之间可以学习和转移多任务表示无灾难性遗忘。其次,我们仔细设计了一种对比的增强学习范式来训练Ctrlformer,从而使其能够达到高样本效率,这在控制问题中很重要。例如,在DMControl基准测试中,与最近的高级方法不同,该方法在使用100K样品转移学习后通过在“ Cartpole”任务中产生零分数而失败,CTRLFORMER可以在维持100K样本的同时获得最先进的分数先前任务的性能。代码和模型已在我们的项目主页中发布。
translated by 谷歌翻译
我们引入了一个新颖的对比表示学习目标和临床时间序列的培训方案。具体而言,我们投射高维EHR。数据到具有低维的封闭单位球,编码几何先验,以使原点代表理想化的完美健康状态,而欧几里得规范与患者的死亡率风险有关。此外,以化粪池患者为例,我们展示了如何学会将两个向量之间的角度与不同器官系统失败相关联,从而学习一种紧凑的表示,这表明了死亡率风险和特定器官衰竭。我们展示了如何将学习的嵌入方式用于在线患者监测,可以补充临床医生并提高下游机器学习任务的性能。这项工作是由于欲望的部分动机,也需要引入一种系统的方式来定义重症监护医学中的强化学习中级奖励。因此,与仅使用终端奖励相比,我们还展示了这种设计如何从学到的嵌入中产生不同的策略和价值分布。
translated by 谷歌翻译
预测性编码提供了对皮质功能的潜在统一说明 - 假设大脑的核心功能是最小化有关世界生成模型的预测错误。该理论与贝叶斯大脑框架密切相关,在过去的二十年中,在理论和认知神经科学领域都产生了重大影响。基于经验测试的预测编码的改进和扩展的理论和数学模型,以及评估其在大脑中实施的潜在生物学合理性以及该理论所做的具体神经生理学和心理学预测。尽管存在这种持久的知名度,但仍未对预测编码理论,尤其是该领域的最新发展进行全面回顾。在这里,我们提供了核心数学结构和预测编码的逻辑的全面综述,从而补充了文献中最新的教程。我们还回顾了该框架中的各种经典和最新工作,从可以实施预测性编码的神经生物学现实的微电路到预测性编码和广泛使用的错误算法的重新传播之间的紧密关系,以及对近距离的调查。预测性编码和现代机器学习技术之间的关系。
translated by 谷歌翻译
短期可塑性(STP)是一种将腐烂记忆存储在大脑皮质突触中的机制。在计算实践中,已经使用了STP,但主要是在尖峰神经元的细分市场中,尽管理论预测它是对某些动态任务的最佳解决方案。在这里,我们提出了一种新型的经常性神经单元,即STP神经元(STPN),它确实实现了惊人的功能。它的关键机制是,突触具有一个状态,通过与偶然性的自我连接在时间上传播。该公式使能够通过时间返回传播来训练可塑性,从而导致一种学习在短期内学习和忘记的形式。 STPN的表现优于所有测试的替代方案,即RNN,LSTMS,其他具有快速重量和可区分可塑性的型号。我们在监督和强化学习(RL)以及协会​​检索,迷宫探索,Atari视频游戏和Mujoco Robotics等任务中证实了这一点。此外,我们计算出,在神经形态或生物电路中,STPN最大程度地减少了模型的能量消耗,因为它会动态降低个体突触。基于这些,生物学STP可能是一种强大的进化吸引子,可最大程度地提高效率和计算能力。现在,STPN将这些神经形态的优势带入了广泛的机器学习实践。代码可从https://github.com/neuromorphiccomputing/stpn获得
translated by 谷歌翻译
神经网络经常将许多无关的概念包装到一个神经元中 - 一种令人困惑的现象被称为“多疾病”,这使解释性更具挑战性。本文提供了一个玩具模型,可以完全理解多义,这是由于模型在“叠加”中存储其他稀疏特征的结果。我们证明了相变的存在,与均匀多型的几何形状的令人惊讶的联系以及与对抗性例子联系的证据。我们还讨论了对机械解释性的潜在影响。
translated by 谷歌翻译
深度加强学习概括(RL)的研究旨在产生RL算法,其政策概括为在部署时间进行新的未经调整情况,避免对其培训环境的过度接受。如果我们要在现实世界的情景中部署强化学习算法,那么解决这一点至关重要,那么环境将多样化,动态和不可预测。该调查是这个新生领域的概述。我们为讨论不同的概括问题提供统一的形式主义和术语,在以前的作品上建立不同的概括问题。我们继续对现有的基准进行分类,以及用于解决泛化问题的当前方法。最后,我们提供了对现场当前状态的关键讨论,包括未来工作的建议。在其他结论之外,我们认为,采取纯粹的程序内容生成方法,基准设计不利于泛化的进展,我们建议快速在线适应和将RL特定问题解决作为未来泛化方法的一些领域,我们推荐在UniTexplorated问题设置中构建基准测试,例如离线RL泛化和奖励函数变化。
translated by 谷歌翻译
Recent progress in artificial intelligence (AI) has renewed interest in building systems that learn and think like people. Many advances have come from using deep neural networks trained end-to-end in tasks such as object recognition, video games, and board games, achieving performance that equals or even beats humans in some respects. Despite their biological inspiration and performance achievements, these systems differ from human intelligence in crucial ways. We review progress in cognitive science suggesting that truly human-like learning and thinking machines will have to reach beyond current engineering trends in both what they learn, and how they learn it. Specifically, we argue that these machines should (a) build causal models of the world that support explanation and understanding, rather than merely solving pattern recognition problems; (b) ground learning in intuitive theories of physics and psychology, to support and enrich the knowledge that is learned; and (c) harness compositionality and learning-to-learn to rapidly acquire and generalize knowledge to new tasks and situations. We suggest concrete challenges and promising routes towards these goals that can combine the strengths of recent neural network advances with more structured cognitive models.
translated by 谷歌翻译