在概率空间或分销回归方面的学习功能的问题正在对机器学习社区产生重大兴趣。此问题背后的一个关键挑战是确定捕获基础功能映射的所有相关属性的合适表示形式。内核平均嵌入式提供了一种原则性的分布回归方法,该方法在概率水平上提高了内核诱导的输入域的相似性。该策略有效地解决了问题的两阶段抽样性质,使人们能够得出具有强大统计保证的估计器,例如普遍的一致性和过度的风险界限。但是,内核平均值嵌入在最大平均差异(MMD)上隐含地铰接,这是概率的度量,可能无法捕获分布之间的关键几何关系。相反,最佳运输(OT)指标可能更具吸引力。在这项工作中,我们提出了一个基于OT的分布回归估计器。我们建立在切成薄片的Wasserstein距离上,以获得基于OT的表示。我们基于这种表示,我们研究了内核脊回归估计量的理论特性,我们证明了普遍的一致性和过多的风险界限。初步实验通过显示提出方法的有效性并将其与基于MMD的估计器进行比较,以补充我们的理论发现。
translated by 谷歌翻译
比较概率分布是许多机器学习算法的关键。最大平均差异(MMD)和最佳运输距离(OT)是在过去几年吸引丰富的关注的概率措施之间的两类距离。本文建立了一些条件,可以通过MMD规范控制Wassersein距离。我们的作品受到压缩统计学习(CSL)理论的推动,资源有效的大规模学习的一般框架,其中训练数据总结在单个向量(称为草图)中,该训练数据捕获与所考虑的学习任务相关的信息。在CSL中的现有结果启发,我们介绍了H \“较旧的较低限制的等距属性(H \”较旧的LRIP)并表明这家属性具有有趣的保证对压缩统计学习。基于MMD与Wassersein距离之间的关系,我们通过引入和研究学习任务的Wassersein可读性的概念来提供压缩统计学习的保证,即概率分布之间的某些特定于特定的特定度量,可以由Wassersein界定距离。
translated by 谷歌翻译
在包括生成建模的各种机器学习应用中的两个概率措施中,已经证明了切片分歧的想法是成功的,并且包括计算两种测量的一维随机投影之间的“基地分歧”的预期值。然而,这种技术的拓扑,统计和计算后果尚未完整地确定。在本文中,我们的目标是弥合这种差距并导出切片概率分歧的各种理论特性。首先,我们表明切片保留了公制公理和分歧的弱连续性,这意味着切片分歧将共享相似的拓扑性质。然后,我们在基本发散属于积分概率度量类别的情况下精确结果。另一方面,我们在轻度条件下建立了切片分歧的样本复杂性并不依赖于问题尺寸。我们终于将一般结果应用于几个基地分歧,并说明了我们对合成和实际数据实验的理论。
translated by 谷歌翻译
本文介绍了一种新的基于仿真的推理程序,以对访问I.I.D. \ samples的多维概率分布进行建模和样本,从而规避明确建模密度函数或设计Markov Chain Monte Carlo的通常方法。我们提出了一个称为可逆的Gromov-monge(RGM)距离的新概念的距离和同构的动机,并研究了RGM如何用于设计新的转换样本,以执行基于模拟的推断。我们的RGM采样器还可以估计两个异质度量度量空间之间的最佳对齐$(\ cx,\ mu,c _ {\ cx})$和$(\ cy,\ cy,\ nu,c _ {\ cy})$从经验数据集中,估计的地图大约将一个量度$ \ mu $推向另一个$ \ nu $,反之亦然。我们研究了RGM距离的分析特性,并在轻度条件下得出RGM等于经典的Gromov-Wasserstein距离。奇怪的是,与Brenier的两极分解结合了连接,我们表明RGM采样器以$ C _ {\ cx} $和$ C _ {\ cy} $的正确选择诱导了强度同构的偏见。研究了有关诱导采样器的收敛,表示和优化问题的统计率。还展示了展示RGM采样器有效性的合成和现实示例。
translated by 谷歌翻译
我们在非标准空间上介绍了积极的确定核的新类别,这些空间完全是严格的确定性或特征。特别是,我们讨论了可分离的希尔伯特空间上的径向内核,并在Banach空间和强型负类型的度量空间上引入了广泛的内核。一般结果用于在可分离的$ l^p $空间和一组措施上提供明确的核类。
translated by 谷歌翻译
概率分布之间的差异措施,通常被称为统计距离,在概率理论,统计和机器学习中普遍存在。为了在估计这些距离的距离时,对维度的诅咒,最近的工作已经提出了通过带有高斯内核的卷积在测量的分布中平滑局部不规则性。通过该框架的可扩展性至高维度,我们研究了高斯平滑$ P $ -wassersein距离$ \ mathsf {w} _p ^ {(\ sigma)} $的结构和统计行为,用于任意$ p \ GEQ 1 $。在建立$ \ mathsf {w} _p ^ {(\ sigma)} $的基本度量和拓扑属性之后,我们探索$ \ mathsf {w} _p ^ {(\ sigma)}(\ hat {\ mu} _n,\ mu)$,其中$ \ hat {\ mu} _n $是$ n $独立观察的实证分布$ \ mu $。我们证明$ \ mathsf {w} _p ^ {(\ sigma)} $享受$ n ^ { - 1/2} $的参数经验融合速率,这对比$ n ^ { - 1 / d} $率对于未平滑的$ \ mathsf {w} _p $ why $ d \ geq 3 $。我们的证明依赖于控制$ \ mathsf {w} _p ^ {(\ sigma)} $ by $ p $ th-sting spoollow sobolev restion $ \ mathsf {d} _p ^ {(\ sigma)} $并导出限制$ \ sqrt {n} \,\ mathsf {d} _p ^ {(\ sigma)}(\ hat {\ mu} _n,\ mu)$,适用于所有尺寸$ d $。作为应用程序,我们提供了使用$ \ mathsf {w} _p ^ {(\ sigma)} $的两个样本测试和最小距离估计的渐近保证,使用$ p = 2 $的实验使用$ \ mathsf {d} _2 ^ {(\ sigma)} $。
translated by 谷歌翻译
最大平均差异(MMD)(例如内核Stein差异(KSD))已成为广泛应用的中心,包括假设测试,采样器选择,分布近似和变异推断。在每种情况下,这些基于内核的差异度量都需要(i)(i)将目标p与其他概率度量分开,甚至(ii)控制弱收敛到P。在本文中,我们得出了新的足够和必要的条件,以确保(i) (ii)。对于可分开的度量空间上的MMD,我们表征了那些将BOCHNER嵌入量度分开的内核,并引入了简单条件,以将所有措施用无限的内核分开,并控制与有界内核的收敛。我们在$ \ mathbb {r}^d $上使用这些结果来实质性地扩大了KSD分离和收敛控制的已知条件,并开发了已知的第一个KSD,以恰好将弱收敛到P。我们的假设检验,测量和改善样本质量以及用Stein变异梯度下降进行抽样的结果。
translated by 谷歌翻译
We propose a framework for analyzing and comparing distributions, which we use to construct statistical tests to determine if two samples are drawn from different distributions. Our test statistic is the largest difference in expectations over functions in the unit ball of a reproducing kernel Hilbert space (RKHS), and is called the maximum mean discrepancy (MMD). We present two distributionfree tests based on large deviation bounds for the MMD, and a third test based on the asymptotic distribution of this statistic. The MMD can be computed in quadratic time, although efficient linear time approximations are available. Our statistic is an instance of an integral probability metric, and various classical metrics on distributions are obtained when alternative function classes are used in place of an RKHS. We apply our two-sample tests to a variety of problems, including attribute matching for databases using the Hungarian marriage method, where they perform strongly. Excellent performance is also obtained when comparing distributions over graphs, for which these are the first such tests.
translated by 谷歌翻译
在本文中,我们考虑了基于系数的正则分布回归,该回归旨在从概率措施中回归到复制的内核希尔伯特空间(RKHS)的实现响应(RKHS),该响应将正则化放在系数上,而内核被假定为无限期的。 。该算法涉及两个采样阶段,第一阶段样本由分布组成,第二阶段样品是从这些分布中获得的。全面研究了回归函数的不同规律性范围内算法的渐近行为,并通过整体操作员技术得出学习率。我们在某些温和条件下获得最佳速率,这与单级采样的最小最佳速率相匹配。与文献中分布回归的内核方法相比,所考虑的算法不需要内核是对称的和阳性的半明确仪,因此为设计不确定的内核方法提供了一个简单的范式,从而丰富了分布回归的主题。据我们所知,这是使用不确定核进行分配回归的第一个结果,我们的算法可以改善饱和效果。
translated by 谷歌翻译
概率分布之间的差异措施是统计推理和机器学习的核心。在许多应用中,在不同的空格上支持感兴趣的分布,需要在数据点之间进行有意义的对应。激励明确地将一致的双向图编码为差异措施,这项工作提出了一种用于匹配的新型不平衡的Monge最佳运输制剂,达到异构体,在不同空间上的分布。我们的配方由于公制空间之间的Gromov-Haussdrow距离而受到了原则放松,并且采用了两个周期一致的地图,将每个分布推向另一个分布。我们研究了拟议的差异的结构性,并且特别表明它将流行的循环一致的生成对抗网络(GaN)框架捕获为特殊情况,从而提供理论解释它。通过计算效率激励,然后我们将差异括起来并将映射限制为参数函数类。由此产生的核化版本被创建为广义最大差异(GMMD)。研究了GMMD的经验估计的收敛速率,并提供了支持我们理论的实验。
translated by 谷歌翻译
我们研究了非参数脊的最小二乘的学习属性。特别是,我们考虑常见的估计人的估计案例,由比例依赖性内核定义,并专注于规模的作用。这些估计器内插数据,可以显示规模来通过条件号控制其稳定性。我们的分析表明,这是不同的制度,具体取决于样本大小,其尺寸与问题的平滑度之间的相互作用。实际上,当样本大小小于数据维度中的指数时,可以选择比例,以便学习错误减少。随着样本尺寸变大,总体错误停止减小但有趣地可以选择规模,使得噪声引起的差异仍然存在界线。我们的分析结合了概率,具有来自插值理论的许多分析技术。
translated by 谷歌翻译
Quantifying the deviation of a probability distribution is challenging when the target distribution is defined by a density with an intractable normalizing constant. The kernel Stein discrepancy (KSD) was proposed to address this problem and has been applied to various tasks including diagnosing approximate MCMC samplers and goodness-of-fit testing for unnormalized statistical models. This article investigates a convergence control property of the diffusion kernel Stein discrepancy (DKSD), an instance of the KSD proposed by Barp et al. (2019). We extend the result of Gorham and Mackey (2017), which showed that the KSD controls the bounded-Lipschitz metric, to functions of polynomial growth. Specifically, we prove that the DKSD controls the integral probability metric defined by a class of pseudo-Lipschitz functions, a polynomial generalization of Lipschitz functions. We also provide practical sufficient conditions on the reproducing kernel for the stated property to hold. In particular, we show that the DKSD detects non-convergence in moments with an appropriate kernel.
translated by 谷歌翻译
由于数据的注释可以在大规模的实际问题中稀缺,利用未标记的示例是机器学习中最重要的方面之一。这是半监督学习的目的。从访问未标记数据的访问中受益,它很自然地弥漫将标记数据平稳地知识到未标记的数据。这诱导了Laplacian正规化的使用。然而,Laplacian正则化的当前实施遭受了几种缺点,特别是众所周知的维度诅咒。在本文中,我们提供了统计分析以克服这些问题,并揭示了具有所需行为的大型光谱滤波方法。它们通过(再现)内核方法来实现,我们提供了现实的计算指南,以使我们的方法可用于大量数据。
translated by 谷歌翻译
尽管现代的大规模数据集通常由异质亚群(例如,多个人口统计组或多个文本语料库)组成 - 最小化平均损失的标准实践并不能保证所有亚人群中均匀的低损失。我们提出了一个凸面程序,该过程控制给定尺寸的所有亚群中最差的表现。我们的程序包括有限样本(非参数)收敛的保证,可以保证最坏的亚群。从经验上讲,我们观察到词汇相似性,葡萄酒质量和累犯预测任务,我们最糟糕的程序学习了对不看到看不见的亚人群的模型。
translated by 谷歌翻译
我们提出了一种统一的技术,用于顺序估计分布之间的凸面分歧,包括内核最大差异等积分概率度量,$ \ varphi $ - 像Kullback-Leibler发散,以及最佳运输成本,例如Wassersein距离的权力。这是通过观察到经验凸起分歧(部分有序)反向半角分离的实现来实现的,而可交换过滤耦合,其具有这些方法的最大不等式。这些技术似乎是对置信度序列和凸分流的现有文献的互补和强大的补充。我们构建一个离线到顺序设备,将各种现有的离线浓度不等式转换为可以连续监测的时间均匀置信序列,在任意停止时间提供有效的测试或置信区间。得到的顺序边界仅在相应的固定时间范围内支付迭代对数价格,保留对问题参数的相同依赖性(如适用的尺寸或字母大小)。这些结果也适用于更一般的凸起功能,如负差分熵,实证过程的高度和V型统计。
translated by 谷歌翻译
教师 - 学生模型提供了一个框架,其中可以以封闭形式描述高维监督学习的典型情况。高斯I.I.D的假设然而,可以认为典型教师 - 学生模型的输入数据可以被认为过于限制,以捕获现实数据集的行为。在本文中,我们介绍了教师和学生可以在不同的空格上行动的模型的高斯协变态概括,以固定的,而是通用的特征映射。虽然仍处于封闭形式的仍然可解决,但这种概括能够捕获广泛的现实数据集的学习曲线,从而兑现师生框架的潜力。我们的贡献是两倍:首先,我们证明了渐近培训损失和泛化误差的严格公式。其次,我们呈现了许多情况,其中模型的学习曲线捕获了使用内​​核回归和分类学习的现实数据集之一,其中盒出开箱特征映射,例如随机投影或散射变换,或者与散射变换预先学习的 - 例如通过培训多层神经网络学到的特征。我们讨论了框架的权力和局限性。
translated by 谷歌翻译
Simulator-based models are models for which the likelihood is intractable but simulation of synthetic data is possible. They are often used to describe complex real-world phenomena, and as such can often be misspecified in practice. Unfortunately, existing Bayesian approaches for simulators are known to perform poorly in those cases. In this paper, we propose a novel algorithm based on the posterior bootstrap and maximum mean discrepancy estimators. This leads to a highly-parallelisable Bayesian inference algorithm with strong robustness properties. This is demonstrated through an in-depth theoretical study which includes generalisation bounds and proofs of frequentist consistency and robustness of our posterior. The approach is then assessed on a range of examples including a g-and-k distribution and a toggle-switch model.
translated by 谷歌翻译
内核平均值嵌入是一种强大的工具,可以代表任意空间上的概率分布作为希尔伯特空间中的单个点。然而,计算和存储此类嵌入的成本禁止其在大规模设置中的直接使用。我们提出了一个基于NyStr \“ Om方法的有效近似过程,该过程利用了数据集的一个小随机子集。我们的主要结果是该过程的近似误差的上限。它在子样本大小上产生足够的条件以获得足够的条件。降低计算成本的同时,标准的$ n^{ - 1/2} $。我们讨论了此结果的应用,以近似的最大平均差异和正交规则,并通过数值实验说明了我们的理论发现。
translated by 谷歌翻译
We study a natural extension of classical empirical risk minimization, where the hypothesis space is a random subspace of a given space. In particular, we consider possibly data dependent subspaces spanned by a random subset of the data, recovering as a special case Nystrom approaches for kernel methods. Considering random subspaces naturally leads to computational savings, but the question is whether the corresponding learning accuracy is degraded. These statistical-computational tradeoffs have been recently explored for the least squares loss and self-concordant loss functions, such as the logistic loss. Here, we work to extend these results to convex Lipschitz loss functions, that might not be smooth, such as the hinge loss used in support vector machines. This unified analysis requires developing new proofs, that use different technical tools, such as sub-gaussian inputs, to achieve fast rates. Our main results show the existence of different settings, depending on how hard the learning problem is, for which computational efficiency can be improved with no loss in performance.
translated by 谷歌翻译
我们解决了在没有观察到的混杂的存在下的因果效应估计的问题,但是观察到潜在混杂因素的代理。在这种情况下,我们提出了两种基于内核的方法,用于非线性因果效应估计:(a)两阶段回归方法,以及(b)最大矩限制方法。我们专注于近端因果学习设置,但是我们的方法可以用来解决以弗雷霍尔姆积分方程为特征的更广泛的逆问题。特别是,我们提供了在非线性环境中解决此问题的两阶段和矩限制方法的统一视图。我们为每种算法提供一致性保证,并证明这些方法在合成数据和模拟现实世界任务的数据上获得竞争结果。特别是,我们的方法优于不适合利用代理变量的早期方法。
translated by 谷歌翻译