一对一的匹配是DETR建立其端到端功能的关键设计,因此对象检测不需要手工制作的NMS(非最大抑制)方法来删除重复检测。这种端到端的签名对于DETR的多功能性很重要,并且已将其推广到广泛的视觉问题,包括实例/语义分割,人体姿势估计以及基于点云/多视图的检测,但是,我们注意到,由于分配为正样本的查询太少,因此一对一的匹配显着降低了阳性样品的训练效率。本文提出了一种基于混合匹配方案的简单而有效的方法,该方法将原始的一对一匹配分支与辅助查询结合在一起,这些查询在训练过程中使用一对一的匹配损失。该混合策略已被证明可显着提高训练效率并提高准确性。在推断中,仅使用原始的一对一匹配分支,从而维持端到端的优点和相同的DETR推断效率。该方法命名为$ \ MATHCAL {H} $ - DETR,它表明可以在各种视觉任务中始终如一地改进各种代表性的DITR方法,包括可变形,3DDER/PETRV2,PETR和TRANDRACK, ,其他。代码将在以下网址提供:https://github.com/hdetr
translated by 谷歌翻译
Detection Transformer (DETR) directly transforms queries to unique objects by using one-to-one bipartite matching during training and enables end-to-end object detection. Recently, these models have surpassed traditional detectors on COCO with undeniable elegance. However, they differ from traditional detectors in multiple designs, including model architecture and training schedules, and thus the effectiveness of one-to-one matching is not fully understood. In this work, we conduct a strict comparison between the one-to-one Hungarian matching in DETRs and the one-to-many label assignments in traditional detectors with non-maximum supervision (NMS). Surprisingly, we observe one-to-many assignments with NMS consistently outperform standard one-to-one matching under the same setting, with a significant gain of up to 2.5 mAP. Our detector that trains Deformable-DETR with traditional IoU-based label assignment achieved 50.2 COCO mAP within 12 epochs (1x schedule) with ResNet50 backbone, outperforming all existing traditional or transformer-based detectors in this setting. On multiple datasets, schedules, and architectures, we consistently show bipartite matching is unnecessary for performant detection transformers. Furthermore, we attribute the success of detection transformers to their expressive transformer architecture. Code is available at https://github.com/jozhang97/DETA.
translated by 谷歌翻译
我们将Dino(\ textbf {d} etr与\ textbf {i} mpred de \ textbf {n} oising hand \ textbf {o} r boxes),一种最先进的端到端对象检测器。 % 在本文中。 Dino通过使用一种对比度方法来降级训练,一种用于锚定初始化的混合查询选择方法以及对盒子预测的两次方案,通过使用对比的方式来改善性能和效率的模型。 Dino在$ 12 $时代获得$ 49.4 $ ap,$ 12.3 $ ap in Coco $ 24 $时期,带有Resnet-50骨干和多尺度功能,可显着改善$ \ textbf {+6.0} $ \ textbf {ap}和ap {ap}和ap}和$ \ textbf {+2.7} $ \ textbf {ap}与以前的最佳detr样模型相比,分别是dn-detr。 Dino在模型大小和数据大小方面都很好地缩放。没有铃铛和哨子,在对objects365数据集进行了swinl骨架的预训练后,Dino在两个Coco \ texttt {val2017}($ \ textbf {63.2} $ \ textbf {ap ap})和\ testtt { -dev}(\ textbf {$ \ textbf {63.3} $ ap})。与排行榜上的其他模型相比,Dino大大降低了其模型大小和预训练数据大小,同时实现了更好的结果。我们的代码将在\ url {https://github.com/ideacvr/dino}提供。
translated by 谷歌翻译
In this paper we present Mask DINO, a unified object detection and segmentation framework. Mask DINO extends DINO (DETR with Improved Denoising Anchor Boxes) by adding a mask prediction branch which supports all image segmentation tasks (instance, panoptic, and semantic). It makes use of the query embeddings from DINO to dot-product a high-resolution pixel embedding map to predict a set of binary masks. Some key components in DINO are extended for segmentation through a shared architecture and training process. Mask DINO is simple, efficient, and scalable, and it can benefit from joint large-scale detection and segmentation datasets. Our experiments show that Mask DINO significantly outperforms all existing specialized segmentation methods, both on a ResNet-50 backbone and a pre-trained model with SwinL backbone. Notably, Mask DINO establishes the best results to date on instance segmentation (54.5 AP on COCO), panoptic segmentation (59.4 PQ on COCO), and semantic segmentation (60.8 mIoU on ADE20K) among models under one billion parameters. Code is available at \url{https://github.com/IDEACVR/MaskDINO}.
translated by 谷歌翻译
检测变压器已在富含样品的可可数据集上实现了竞争性能。但是,我们显示他们中的大多数人在小型数据集(例如CityScapes)上遭受了大量的性能下降。换句话说,检测变压器通常是渴望数据的。为了解决这个问题,我们通过逐步过渡从数据效率的RCNN变体到代表性的DETR,从经验中分析影响数据效率的因素。经验结果表明,来自本地图像区域的稀疏特征采样可容纳关键。基于此观察结果,我们通过简单地简单地交替如何在跨意义层构建键和价值序列,从而减少现有检测变压器的数据问题,并对原始模型进行最小的修改。此外,我们引入了一种简单而有效的标签增强方法,以提供更丰富的监督并提高数据效率。实验表明,我们的方法可以很容易地应用于不同的检测变压器,并在富含样品和样品的数据集上提高其性能。代码将在\ url {https://github.com/encounter1997/de-detrs}上公开提供。
translated by 谷歌翻译
We present in this paper a novel denoising training method to speedup DETR (DEtection TRansformer) training and offer a deepened understanding of the slow convergence issue of DETR-like methods. We show that the slow convergence results from the instability of bipartite graph matching which causes inconsistent optimization goals in early training stages. To address this issue, except for the Hungarian loss, our method additionally feeds ground-truth bounding boxes with noises into Transformer decoder and trains the model to reconstruct the original boxes, which effectively reduces the bipartite graph matching difficulty and leads to a faster convergence. Our method is universal and can be easily plugged into any DETR-like methods by adding dozens of lines of code to achieve a remarkable improvement. As a result, our DN-DETR results in a remarkable improvement ($+1.9$AP) under the same setting and achieves the best result (AP $43.4$ and $48.6$ with $12$ and $50$ epochs of training respectively) among DETR-like methods with ResNet-$50$ backbone. Compared with the baseline under the same setting, DN-DETR achieves comparable performance with $50\%$ training epochs. Code is available at \url{https://github.com/FengLi-ust/DN-DETR}.
translated by 谷歌翻译
检测变压器(DETR)依赖于一对一的标签分配,即仅分配一个地面真相(GT)对象作为一个阳性对象查询,用于端到端对象检测,并且缺乏利用多个积极查询的能力。我们提出了一种新颖的DETR训练方法,称为{\ em grout detr},以支持多个积极查询。具体来说,我们将阳性分解为多个独立组,并在每个组中只保留一个阳性对象。我们在培训期间进行了简单的修改:(i)采用$ k $ of Absock Queries; (ii)对具有相同参数的每组对象查询进行解码器自我注意; (iii)为每个组执行一对一的标签分配,从而为每个GT对象提供$ K $阳性对象查询。在推论中,我们只使用一组对象查询,对架构和过程没有任何修改。我们验证了提出的方法对DITR变体的有效性,包括条件DITR,DAB-DER,DN-DEN和DINO。
translated by 谷歌翻译
The DETR object detection approach applies the transformer encoder and decoder architecture to detect objects and achieves promising performance. In this paper, we present a simple approach to address the main problem of DETR, the slow convergence, by using representation learning technique. In this approach, we detect an object bounding box as a pair of keypoints, the top-left corner and the center, using two decoders. By detecting objects as paired keypoints, the model builds up a joint classification and pair association on the output queries from two decoders. For the pair association we propose utilizing contrastive self-supervised learning algorithm without requiring specialized architecture. Experimental results on MS COCO dataset show that Pair DETR can converge at least 10x faster than original DETR and 1.5x faster than Conditional DETR during training, while having consistently higher Average Precision scores.
translated by 谷歌翻译
已经提出了各种模型来执行对象检测。但是,大多数人都需要许多手工设计的组件,例如锚和非最大抑制(NMS),以表现出良好的性能。为了减轻这些问题,建议了基于变压器的DETR及其变体可变形DETR。这些解决了为对象检测模型设计头部时的许多复杂问题。但是,当将基于变压器的模型视为其他模型的对象检测中的最新方法时,仍然存在对性能的疑问,这取决于锚定和NMS,揭示了更好的结果。此外,目前尚不清楚是否可以仅与注意模块结合使用端到端管道,因为Detr适应的变压器方法使用卷积神经网络(CNN)作为骨干身体。在这项研究中,我们建议将几个注意力模块与我们的新任务特异性分裂变压器(TSST)相结合是一种有力的方法,可以在没有传统手工设计的组件的情况下生成可可结果上最先进的性能。通过将通用注意模块分为两个分开的目标注意模块,该方法允许设计简单的对象检测模型。对可可基准的广泛实验证明了我们方法的有效性。代码可在https://github.com/navervision/tsst上获得
translated by 谷歌翻译
在这项工作中,我们呈现SEQFormer,这是一个令人沮丧的视频实例分段模型。 SEQFormer遵循Vision变换器的原理,该方法模型视频帧之间的实例关系。然而,我们观察到一个独立的实例查询足以捕获视频中的时间序列,但应该独立地使用每个帧进行注意力机制。为此,SEQFormer在每个帧中定位一个实例,并聚合时间信息以学习视频级实例的强大表示,其用于动态地预测每个帧上的掩模序列。实例跟踪自然地实现而不进行跟踪分支或后处理。在YouTube-VIS数据集上,SEQFormer使用Reset-50个骨干和49.0 AP实现47.4个AP,其中Reset-101骨干,没有响铃和吹口哨。此类成果分别显着超过了以前的最先进的性能4.6和4.4。此外,与最近提出的Swin变压器集成,SEQFormer可以实现59.3的高得多。我们希望SEQFormer可能是一个强大的基线,促进了视频实例分段中的未来研究,同时使用更强大,准确,整洁的模型来实现该字段。代码和预先训练的型号在https://github.com/wjf5203/seqformer上公开使用。
translated by 谷歌翻译
虽然用变压器(DETR)的检测越来越受欢迎,但其全球注意力建模需要极其长的培训期,以优化和实现有前途的检测性能。现有研究的替代方案主要开发先进的特征或嵌入设计来解决培训问题,指出,基于地区的兴趣区域(ROI)的检测细化可以很容易地帮助减轻DETR方法培训的难度。基于此,我们在本文中介绍了一种新型的经常性闪闪发光的解码器(Rego)。特别是,REGO采用多级复发处理结构,以帮助更准确地逐渐关注前景物体。在每个处理阶段,从ROI的闪烁特征提取视觉特征,其中来自上阶段的检测结果的放大边界框区域。然后,引入了基于一瞥的解码器,以提供基于前一级的瞥见特征和注意力建模输出的精细检测结果。在实践中,Refo可以很容易地嵌入代表性的DETR变体,同时保持其完全端到端的训练和推理管道。特别地,Refo帮助可变形的DETR在MSCOCO数据集上实现44.8AP,只有36个训练时期,与需要500和50时期的第一DETR和可变形的DETR相比,分别可以分别实现相当的性能。实验还表明,Rego始终如一地提升不同DETR探测器的性能高达7%的相对增益,在相同的50次训练时期。代码可通过https://github.com/zhechen/deformable-detr-rego获得。
translated by 谷歌翻译
Panoptic semonation涉及联合语义分割和实例分割的组合,其中图像内容分为两种类型:事物和东西。我们展示了Panoptic SegFormer,是与变压器的Panoptic Semonation的一般框架。它包含三个创新组件:高效的深度监督掩模解码器,查询解耦策略以及改进的后处理方法。我们还使用可变形的DETR来有效地处理多尺度功能,这是一种快速高效的DETR版本。具体而言,我们以层式方式监督掩模解码器中的注意模块。这种深度监督策略让注意模块快速关注有意义的语义区域。与可变形的DETR相比,它可以提高性能并将所需培训纪元的数量减少一半。我们的查询解耦策略对查询集的职责解耦并避免了事物和东西之间的相互干扰。此外,我们的后处理策略通过联合考虑分类和分割质量来解决突出的面具重叠而没有额外成本的情况。我们的方法会在基线DETR模型上增加6.2 \%PQ。 Panoptic SegFormer通过56.2 \%PQ实现最先进的结果。它还显示出对现有方法的更强大的零射鲁布利。代码释放\ url {https://github.com/zhiqi-li/panoptic-segformer}。
translated by 谷歌翻译
在本文中,我们对检测变压器(DETR)感兴趣,这是一种基于变压器编码器编码器架构的端到端对象检测方法,而无需手工制作的后处理,例如NMS。受到有条件的Detr的启发,这是一种具有快速训练收敛性的改进的DETR,对内部解码器层提出了盒子查询(最初称为空间查询),我们将对象查询重新将对象查询重新布置为盒子查询的格式,该格式是参考参考嵌入的组成点和框相对于参考点的转换。该重新制定表明在更快地使用R-CNN中广泛研究的DETR中的对象查询与锚固框之间的联系。此外,我们从图像内容中学习了盒子查询,从而进一步提高了通过快速训练收敛的有条件DETR的检测质量。此外,我们采用轴向自我注意的想法来节省内存成本并加速编码器。所得的检测器(称为条件DETR V2)取得比条件DETR更好的结果,可节省内存成本并更有效地运行。例如,对于DC $ 5 $ -Resnet- $ 50 $骨干,我们的方法在可可$ Val $ set上获得了$ 44.8 $ ap,$ 16.4 $ fps和有条件的detr相比,它运行了$ 1.6 \ tims $ $ $ $ $,节省$ 74 $ \ \ \ \ \ \ \ \ \ \ \ \ \ $ 74美元总体内存成本的百分比,并提高$ 1.0 $ ap得分。
translated by 谷歌翻译
对象的时间建模是多个对象跟踪(MOT)的关键挑战。现有方法通过通过基于运动和基于外观的相似性启发式方法关联检测来跟踪。关联的后处理性质阻止了视频序列中时间变化的端到端。在本文中,我们提出了MOTR,它扩展了DETR并介绍了轨道查询,以模拟整个视频中的跟踪实例。轨道查询被转移并逐帧更新,以随着时间的推移执行迭代预测。我们提出了曲目感知的标签分配,以训练轨道查询和新生儿对象查询。我们进一步提出了时间聚集网络和集体平均损失,以增强时间关系建模。 Dancetrack上的实验结果表明,MOTR在HOTA度量方面的表现明显优于最先进的方法,字节范围为6.5%。在MOT17上,MOTR在关联性能方面优于我们的并发作品,跟踪器和Transtrack。 MOTR可以作为对时间建模和基于变压器的跟踪器的未来研究的更强基线。代码可在https://github.com/megvii-research/motr上找到。
translated by 谷歌翻译
speed among all existing VIS models, and achieves the best result among methods using single model on the YouTube-VIS dataset. For the first time, we demonstrate a much simpler and faster video instance segmentation framework built upon Transformers, achieving competitive accuracy. We hope that VisTR can motivate future research for more video understanding tasks.
translated by 谷歌翻译
视频实例分割(VIS)在视频序列中共同处理多对象检测,跟踪和分割。过去,VIS方法反映了这些子任务在其建筑设计中的碎片化,因此在关节溶液上错过了这些子任务。变形金刚最近允许将整个VIS任务作为单个设定预测问题进行。然而,现有基于变压器的方法的二次复杂性需要较长的训练时间,高内存需求和处理低音尺度特征地图的处理。可变形的注意力提供了更有效的替代方案,但尚未探索其对时间域或分段任务的应用。在这项工作中,我们提出了可变形的Vis(Devis),这是一种利用可变形变压器的效率和性能的VIS方法。为了在多个框架上共同考虑所有VIS子任务,我们使用实例感知对象查询表示时间尺度可变形。我们进一步介绍了带有多尺度功能的新图像和视频实例蒙版头,并通过多提示剪辑跟踪执行近乎对方的视频处理。 Devis减少了内存和训练时间要求,并在YouTube-Vis 2021以及具有挑战性的OVIS数据集上实现了最先进的结果。代码可在https://github.com/acaelles97/devis上找到。
translated by 谷歌翻译
我们提出了一种用于多实例姿态估计的端到端培训方法,称为诗人(姿势估计变压器)。将卷积神经网络与变压器编码器 - 解码器架构组合,我们将多个姿势估计从图像标记为直接设置预测问题。我们的模型能够使用双方匹配方案直接出现所有个人的姿势。诗人使用基于集的全局损失进行培训,该丢失包括关键点损耗,可见性损失和载重损失。诗歌的原因与多个检测到的个人与完整图像上下文之间的关系直接预测它们并行姿势。我们展示诗人在Coco Keypoint检测任务上实现了高精度,同时具有比其他自下而上和自上而下的方法更少的参数和更高推理速度。此外,在将诗人应用于动物姿势估计时,我们表现出了成功的转移学习。据我们所知,该模型是第一个端到端的培训多实例姿态估计方法,我们希望它将成为一种简单而有前途的替代方案。
translated by 谷歌翻译
变压器是一种基于关注的编码器解码器架构,彻底改变了自然语言处理领域。灵感来自这一重大成就,最近在将变形式架构调整到计算机视觉(CV)领域的一些开创性作品,这已经证明了他们对各种简历任务的有效性。依靠竞争力的建模能力,与现代卷积神经网络相比在本文中,我们已经为三百不同的视觉变压器进行了全面的审查,用于三个基本的CV任务(分类,检测和分割),提出了根据其动机,结构和使用情况组织这些方法的分类。 。由于培训设置和面向任务的差异,我们还在不同的配置上进行了评估了这些方法,以便于易于和直观的比较而不是各种基准。此外,我们已经揭示了一系列必不可少的,但可能使变压器能够从众多架构中脱颖而出,例如松弛的高级语义嵌入,以弥合视觉和顺序变压器之间的差距。最后,提出了三个未来的未来研究方向进行进一步投资。
translated by 谷歌翻译
如果没有图像中的密集瓷砖锚点或网格点,稀疏的R-CNN可以通过以级联的训练方式更新的一组对象查询和建议框来实现有希望的结果。但是,由于性质稀疏以及查询与其参加地区之间的一对一关系,它在很大程度上取决于自我注意力,这通常在早期训练阶段不准确。此外,在密集对象的场景中,对象查询与许多无关的物体相互作用,从而降低了其独特性并损害了性能。本文提议在不同的框之间使用iOU作为自我注意力的价值路由的先验。原始注意力矩阵乘以从提案盒中计算出的相同大小的矩阵,并确定路由方案,以便可以抑制无关的功能。此外,为了准确提取分类和回归的功能,我们添加了两个轻巧投影头,以根据对象查询提供动态通道掩码,并且它们随动态convs的输出而繁殖,从而使结果适合两个不同的任务。我们在包括MS-Coco和CrowdHuman在内的不同数据集上验证了所提出的方案,这表明它可显着提高性能并提高模型收敛速度。
translated by 谷歌翻译