强化学习(RL)涉及在未知系统中执行探索性动作。这可以将学习代理放在危险且潜在的灾难性系统中。当前在RL中解决安全学习的方法同时权衡了安全探索和任务实现。在本文中,我们介绍了新一代的RL求解器,这些求解器学会最大程度地减少安全性违规行为,同时在安全政策可以容忍的范围内最大化任务奖励。我们的方法引入了一个新型的两人框架,用于安全RL,称为分配探索安全培训算法(DESTA)。 DESTA的核心是两种自适应代理之间的游戏:安全代理,其任务是最大程度地减少安全违规行为和任务代理,其目标是最大程度地提高环境奖励。具体而言,安全代理可以在任何给定点有选择地控制系统,以防止任务代理在任何其他州自由执行其策略时违反安全性。该框架使安全代理能够学会在培训和测试时间中最大程度地减少未来安全违规行为的某些行动,而任务代理人执行的动作可以最大程度地提高其他任何地方的任务绩效。从理论上讲,我们证明DESTA会汇合到稳定的点,从而最大程度地违反了对预验证的政策的行为。从经验上讲,我们表明了DESTA提高现有政策安全性的能力,其次,当对任务代理和安全代理人同时培训时,构建安全的RL政策。我们展示了DESTA在Lunar Lander和Openai Gym的Frozen Lake中的领先RL方法的出色表现。
translated by 谷歌翻译
奖励成型(RS)是克服稀疏或不信息奖励问题的强大方法(RL)。但是,RS通常依赖于手动设计的成型奖励功能,其构造耗时且容易出错。它还需要与自主学习目标相反的领域知识。我们介绍了增强学习优化塑造算法(ROSA)的增强型,这是一个自动化的RS框架,其中塑造奖励函数是在两个代理之间的新型马尔可夫游戏中构建的。奖励塑料代理(Shaper)使用切换控件来确定在其他代理(控制器)使用这些形状奖励的任务中学习任务的最佳策略,以确定要添加形状奖励及其最佳值的状态。我们证明,Rosa很容易采用现有的RL算法,学会了构建针对任务的塑造奖励功能,从而确保有效地收敛到高性能策略。我们在三个经过精心设计的实验中展示了罗莎(Rosa)在挑战稀疏奖励环境中对最先进的RS算法的优越性能。
translated by 谷歌翻译
几乎可以肯定(或使用概率)满足安全限制对于在现实生活中的增强学习(RL)的部署至关重要。例如,理想情况下,平面降落和起飞应以概率为单位发生。我们通过引入安全增强(SAUTE)马尔可夫决策过程(MDP)来解决该问题,在该过程中,通过将其扩大到州空间并重塑目标来消除安全限制。我们表明,Saute MDP满足了Bellman方程,并使我们更加接近解决安全的RL,几乎可以肯定地满足。我们认为,Saute MDP允许从不同的角度查看安全的RL问题,从而实现新功能。例如,我们的方法具有插件的性质,即任何RL算法都可以“炒”。此外,国家扩展允许跨安全限制进行政策概括。我们最终表明,当约束满意度非常重要时,SAUTE RL算法的表现可以胜过其最先进的对应物。
translated by 谷歌翻译
在钢筋学习(RL)中,代理必须探索最初未知的环境,以便学习期望的行为。当RL代理部署在现实世界环境中时,安全性是主要关注的。受约束的马尔可夫决策过程(CMDPS)可以提供长期的安全约束;但是,该代理人可能会违反探索其环境的制约因素。本文提出了一种称为显式探索,漏洞探索或转义($ e ^ {4} $)的基于模型的RL算法,它将显式探索或利用($ e ^ {3} $)算法扩展到强大的CMDP设置。 $ e ^ 4 $明确地分离开发,探索和逃脱CMDP,允许针对已知状态的政策改进的有针对性的政策,发现未知状态,以及安全返回到已知状态。 $ e ^ 4 $强制优化了从一组CMDP模型的最坏情况CMDP上的这些策略,该模型符合部署环境的经验观察。理论结果表明,在整个学习过程中满足安全限制的情况下,在多项式时间中找到近最优的约束政策。我们讨论了稳健约束的离线优化算法,以及如何基于经验推理和先验知识来结合未知状态过渡动态的不确定性。
translated by 谷歌翻译
In this work, we focus on the problem of safe policy transfer in reinforcement learning: we seek to leverage existing policies when learning a new task with specified constraints. This problem is important for safety-critical applications where interactions are costly and unconstrained policies can lead to undesirable or dangerous outcomes, e.g., with physical robots that interact with humans. We propose a Constrained Markov Decision Process (CMDP) formulation that simultaneously enables the transfer of policies and adherence to safety constraints. Our formulation cleanly separates task goals from safety considerations and permits the specification of a wide variety of constraints. Our approach relies on a novel extension of generalized policy improvement to constrained settings via a Lagrangian formulation. We devise a dual optimization algorithm that estimates the optimal dual variable of a target task, thus enabling safe transfer of policies derived from successor features learned on source tasks. Our experiments in simulated domains show that our approach is effective; it visits unsafe states less frequently and outperforms alternative state-of-the-art methods when taking safety constraints into account.
translated by 谷歌翻译
在将强化学习(RL)部署到现实世界系统中时,确保安全是一个至关重要的挑战。我们开发了基于置信的安全过滤器,这是一种基于概率动力学模型的标准RL技术,通过标准RL技术学到的名义策略来证明国家安全限制的控制理论方法。我们的方法基于对成本功能的国家约束的重新重新制定,从而将安全验证减少到标准RL任务。通过利用幻觉输入的概念,我们扩展了此公式,以确定对具有很高可能性的未知系统安全的“备份”策略。最后,在推出备用政策期间的每一个时间步骤中,标称政策的调整最少,以便以后可以保证安全恢复。我们提供正式的安全保证,并从经验上证明我们方法的有效性。
translated by 谷歌翻译
在对关键安全环境的强化学习中,通常希望代理在所有时间点(包括培训期间)服从安全性限制。我们提出了一种称为Spice的新型神经符号方法,以解决这个安全的探索问题。与现有工具相比,Spice使用基于符号最弱的先决条件的在线屏蔽层获得更精确的安全性分析,而不会不适当地影响培训过程。我们在连续控制基准的套件上评估了该方法,并表明它可以达到与现有的安全学习技术相当的性能,同时遭受较少的安全性违规行为。此外,我们提出的理论结果表明,在合理假设下,香料会收敛到最佳安全政策。
translated by 谷歌翻译
除了最大化奖励目标之外,现实世界中的强化学习(RL)代理商必须满足安全限制。基于模型的RL算法占据了减少不安全的现实世界行动的承诺:它们可以合成使用来自学习模型的模拟样本遵守所有约束的策略。但是,即使对于预测满足所有约束的操作,甚至可能导致真实的结构违规。我们提出了保守和自适应惩罚(CAP),一种基于模型的安全RL框架,其通过捕获模型不确定性并自适应利用它来平衡奖励和成本目标来占潜在的建模错误。首先,CAP利用基于不确定性的惩罚来膨胀预测成本。从理论上讲,我们展示了满足这种保守成本约束的政策,也可以保证在真正的环境中是可行的。我们进一步表明,这保证了在RL培训期间所有中间解决方案的安全性。此外,在使用环境中使用真正的成本反馈,帽子在培训期间自适应地调整这种惩罚。我们在基于状态和基于图像的环境中,评估了基于模型的安全RL的保守和自适应惩罚方法。我们的结果表明了样品效率的大量收益,同时产生比现有安全RL算法更少的违规行为。代码可用:https://github.com/redrew/cap
translated by 谷歌翻译
我们考虑了学习eoiSodic安全控制政策的问题,这最小化了客观函数,同时满足必要的安全约束 - 都在学习和部署期间。我们使用具有未知转换概率函数的有限范围限制的Markov决策过程(CMDP)的有限范围限制的Markov决策过程(CMDP)制定了这种安全约束的强化学习(RL)问题。在这里,我们将安全要求造型为关于在所有学习集中必须满足的预期累计成本的限制。我们提出了一种基于模型的安全RL算法,我们称之为乐观 - 悲观的安全强化学习(OPSRL)算法,并表明它实现了$ \ TINDE {\ MATHCAL {O}}(S ^ {2} \ SQRT {啊^ {7} k} /(\ bar {c} - \ bar {c} _ {b}))$累积遗憾在学习期间没有违反安全限制,其中$ S $是州的数量,$ a $动作数量,$ H $是地平线长度,$ k $是学习剧集的数量,$(\ bar {c} - \ bar {c} _ {b})$是安全差距,即,约束值与已知安全基线政策的成本之间的差异。缩放为$ \ tilde {\ mathcal {o}}(\ sqrt {k})$与学习期间可能违反约束的传统方法相同,这意味着我们的算法尽管提供了一个额外的遗憾安全保证。我们的主要思想是利用乐观的探索方法,以悲观的约束实施来学习政策。这种方法同时激励了未知国家的探索,同时对访问可能违反安全限制的国家施加罚款。我们通过对传统方法的基准问题进行评估来验证我们的算法。
translated by 谷歌翻译
强化学习(RL)是一种有希望的方法,对现实世界的应用程序取得有限,因为确保安全探索或促进充分利用是控制具有未知模型和测量不确定性的机器人系统的挑战。这种学习问题对于连续空间(状态空间和动作空间)的复杂任务变得更加棘手。在本文中,我们提出了一种由几个方面组成的基于学习的控制框架:(1)线性时间逻辑(LTL)被利用,以便于可以通过无限视野的复杂任务转换为新颖的自动化结构; (2)我们为RL-Agent提出了一种创新的奖励计划,正式保证,使全球最佳政策最大化满足LTL规范的概率; (3)基于奖励塑造技术,我们开发了利用自动机构结构的好处进行了模块化的政策梯度架构来分解整体任务,并促进学习控制器的性能; (4)通过纳入高斯过程(GPS)来估计不确定的动态系统,我们使用指数控制屏障功能(ECBF)综合基于模型的保障措施来解决高阶相对度的问题。此外,我们利用LTL自动化和ECBF的性质来构建引导过程,以进一步提高勘探效率。最后,我们通过多个机器人环境展示了框架的有效性。我们展示了这种基于ECBF的模块化深RL算法在训练期间实现了近乎完美的成功率和保护安全性,并且在训练期间具有很高的概率信心。
translated by 谷歌翻译
安全探索是强化学习(RL)的常见问题,旨在防止代理在探索环境时做出灾难性的决定。一个解决这个问题的方法家庭以这种环境的(部分)模型的形式假设域知识,以决定动作的安全性。所谓的盾牌迫使RL代理只选择安全的动作。但是,要在各种应用中采用,必须超越执行安全性,还必须确保RL的适用性良好。我们通过与最先进的深度RL的紧密整合扩展了盾牌的适用性,并在部分可观察性下提供了充满挑战的,稀疏的奖励环境中的广泛实证研究。我们表明,经过精心整合的盾牌可确保安全性,并可以提高RL代理的收敛速度和最终性能。我们此外表明,可以使用盾牌来引导最先进的RL代理:它们在屏蔽环境中初步学习后保持安全,从而使我们最终可以禁用潜在的过于保守的盾牌。
translated by 谷歌翻译
In this work we introduce reinforcement learning techniques for solving lexicographic multi-objective problems. These are problems that involve multiple reward signals, and where the goal is to learn a policy that maximises the first reward signal, and subject to this constraint also maximises the second reward signal, and so on. We present a family of both action-value and policy gradient algorithms that can be used to solve such problems, and prove that they converge to policies that are lexicographically optimal. We evaluate the scalability and performance of these algorithms empirically, demonstrating their practical applicability. As a more specific application, we show how our algorithms can be used to impose safety constraints on the behaviour of an agent, and compare their performance in this context with that of other constrained reinforcement learning algorithms.
translated by 谷歌翻译
Besides the recent impressive results on reinforcement learning (RL), safety is still one of the major research challenges in RL. RL is a machine-learning approach to determine near-optimal policies in Markov decision processes (MDPs). In this paper, we consider the setting where the safety-relevant fragment of the MDP together with a temporal logic safety specification is given and many safety violations can be avoided by planning ahead a short time into the future. We propose an approach for online safety shielding of RL agents. During runtime, the shield analyses the safety of each available action. For any action, the shield computes the maximal probability to not violate the safety specification within the next $k$ steps when executing this action. Based on this probability and a given threshold, the shield decides whether to block an action from the agent. Existing offline shielding approaches compute exhaustively the safety of all state-action combinations ahead of time, resulting in huge computation times and large memory consumption. The intuition behind online shielding is to compute at runtime the set of all states that could be reached in the near future. For each of these states, the safety of all available actions is analysed and used for shielding as soon as one of the considered states is reached. Our approach is well suited for high-level planning problems where the time between decisions can be used for safety computations and it is sustainable for the agent to wait until these computations are finished. For our evaluation, we selected a 2-player version of the classical computer game SNAKE. The game represents a high-level planning problem that requires fast decisions and the multiplayer setting induces a large state space, which is computationally expensive to analyse exhaustively.
translated by 谷歌翻译
体验重播\ CITEP {Lin1993ReInforcement,Mnih2015human}是一种广泛使用的技术,可以实现有效利用数据和R1算法中的性能提高。在经验重放中,过去的转换存储在内存缓冲区中并在学习期间重新使用。在以前的作品中提出了从重播缓冲区中提出了用于从重放缓冲区的采样方案的各种建议,试图最佳选择这些经验,这些经历将有最大贡献的融合到最佳政策。在这里,我们对重播采样方案提供一些条件,该方案将确保收敛,重点是表格设置中的众所周知的Q学习算法。在为收敛建立充足的条件后,我们向建议以偏见方式重播的经验略有不同的用法作为改变所产生的策略的属性的方法。我们启动了对体验重放的严格研究作为控制和修改生成策略的属性的工具。特别是,我们表明使用适当的偏置采样方案可以允许我们实现\ emph {Safe}策略。我们认为,使用体验重放作为偏置机制,允许以可取的方式控制所产生的政策是许多应用程序具有有希望的潜力的想法。
translated by 谷歌翻译
在本文中,我们研究了加强学习问题的安全政策的学习。这是,我们的目标是控制我们不知道过渡概率的马尔可夫决策过程(MDP),但我们通过经验访问样品轨迹。我们将安全性定义为在操作时间内具有高概率的期望安全集中的代理。因此,我们考虑受限制的MDP,其中限制是概率。由于没有直接的方式来优化关于加强学习框架中的概率约束的政策,因此我们提出了对问题的遍历松弛。拟议的放松的优点是三倍。 (i)安全保障在集界任务的情况下保持,并且它们保持在一个给定的时间范围内,以继续进行任务。 (ii)如果政策的参数化足够丰富,则约束优化问题尽管其非凸起具有任意小的二元间隙。 (iii)可以使用标准策略梯度结果和随机近似工具容易地计算与安全学习问题相关的拉格朗日的梯度。利用这些优势,我们建立了原始双算法能够找到安全和最佳的政策。我们在连续域中的导航任务中测试所提出的方法。数值结果表明,我们的算法能够将策略动态调整到环境和所需的安全水平。
translated by 谷歌翻译
值得信赖的强化学习算法应有能力解决挑战性的现实问题,包括{Robustly}处理不确定性,满足{安全}的限制以避免灾难性的失败,以及在部署过程中{prencepentiming}以避免灾难性的失败}。这项研究旨在概述这些可信赖的强化学习的主要观点,即考虑其在鲁棒性,安全性和概括性上的内在脆弱性。特别是,我们给出严格的表述,对相应的方法进行分类,并讨论每个观点的基准。此外,我们提供了一个前景部分,以刺激有希望的未来方向,并简要讨论考虑人类反馈的外部漏洞。我们希望这项调查可以在统一的框架中将单独的研究汇合在一起,并促进强化学习的可信度。
translated by 谷歌翻译
在训练数据的分布中评估时,学到的模型和政策可以有效地概括,但可以在分布输入输入的情况下产生不可预测且错误的输出。为了避免在部署基于学习的控制算法时分配变化,我们寻求一种机制将代理商限制为类似于受过训练的国家和行动的机制。在控制理论中,Lyapunov稳定性和控制不变的集合使我们能够保证稳定系统周围系统的控制器,而在机器学习中,密度模型使我们能够估算培训数据分布。我们可以将这两个概念结合起来,产生基于学习的控制算法,这些算法仅使用分配动作将系统限制为分布状态?在这项工作中,我们建议通过结合Lyapunov稳定性和密度估计的概念来做到这一点,引入Lyapunov密度模型:控制Lyapunov函数和密度模型的概括,这些函数和密度模型可以保证代理商在其整个轨迹上保持分布的能力。
translated by 谷歌翻译
安全勘探是在安全关键系统中应用强化学习(RL)的关键。现有的安全勘探方法在规律的假设下保证安全,并且很难将它们应用于大规模的真正问题。我们提出了一种新颖的算法,SPO-LF,它们优化代理的策略,同时学习通过传感器和环境奖励/安全使用的本地可用功能与使用广义线性函数近似之间的关系。我们提供了对其安全性和最优性的理论保障。我们通过实验表明,我们的算法在样本复杂性和计算成本方面更有效,2)更适用于比以前的安全RL方法具有理论保证的方法,以及3)与现有的相当相当的样本和更安全。具有安全限制的高级深度RL方法。
translated by 谷歌翻译
在过去的十年中,多智能经纪人强化学习(Marl)已经有了重大进展,但仍存在许多挑战,例如高样本复杂性和慢趋同稳定的政策,在广泛的部署之前需要克服,这是可能的。然而,在实践中,许多现实世界的环境已经部署了用于生成策略的次优或启发式方法。一个有趣的问题是如何最好地使用这些方法作为顾问,以帮助改善多代理领域的加强学习。在本文中,我们提供了一个原则的框架,用于将动作建议纳入多代理设置中的在线次优顾问。我们描述了在非传记通用随机游戏环境中提供多种智能强化代理(海军上将)的问题,并提出了两种新的基于Q学习的算法:海军上将决策(海军DM)和海军上将 - 顾问评估(Admiral-AE) ,这使我们能够通过适当地纳入顾问(Admiral-DM)的建议来改善学习,并评估顾问(Admiral-AE)的有效性。我们从理论上分析了算法,并在一般加上随机游戏中提供了关于他们学习的定点保证。此外,广泛的实验说明了这些算法:可以在各种环境中使用,具有对其他相关基线的有利相比的性能,可以扩展到大状态行动空间,并且对来自顾问的不良建议具有稳健性。
translated by 谷歌翻译
Safety is still one of the major research challenges in reinforcement learning (RL). In this paper, we address the problem of how to avoid safety violations of RL agents during exploration in probabilistic and partially unknown environments. Our approach combines automata learning for Markov Decision Processes (MDPs) and shield synthesis in an iterative approach. Initially, the MDP representing the environment is unknown. The agent starts exploring the environment and collects traces. From the collected traces, we passively learn MDPs that abstractly represent the safety-relevant aspects of the environment. Given a learned MDP and a safety specification, we construct a shield. For each state-action pair within a learned MDP, the shield computes exact probabilities on how likely it is that executing the action results in violating the specification from the current state within the next $k$ steps. After the shield is constructed, the shield is used during runtime and blocks any actions that induce a too large risk from the agent. The shielded agent continues to explore the environment and collects new data on the environment. Iteratively, we use the collected data to learn new MDPs with higher accuracy, resulting in turn in shields able to prevent more safety violations. We implemented our approach and present a detailed case study of a Q-learning agent exploring slippery Gridworlds. In our experiments, we show that as the agent explores more and more of the environment during training, the improved learned models lead to shields that are able to prevent many safety violations.
translated by 谷歌翻译