在过去的几年中,无人驾驶汽车(UAV)的领域已经达到了高水平的成熟度。因此,将此类平台从封闭的实验室带到与人类的日常互动对于无人机的商业化很重要。本文的一种特殊人类企业感兴趣的方案是有效载荷切换计划,无人机应要求人将有效载荷移交给人类的有效载荷。在此范围内,本文提出了一种新型的实时人类UAV相互作用检测方法,其中开发了基于短期记忆(LSTM)的神经网络,以检测由人类相互作用动态导致的状态概况。提出了一种新的数据预处理技术;该技术利用培训和测试无人机的估计过程参数来构建动态不变测试数据。提出的检测算法是轻量级的,因此可以使用Off Shelf UAV平台实时部署;此外,它仅取决于任何经典无人机平台上存在的惯性和位置测量。提出的方法是在多电动无人机和人类之间的有效载荷切换任务上证明的。使用实时实验收集培训和测试数据。检测方法的准确性为96 \%,即使存在外部风干扰,也没有误报,并且在两种不同的无人机上进行部署和测试时。
translated by 谷歌翻译
在本文中,我们分析了具有基于视觉导航的无人机(UAV)的时间延迟动力学对控制器设计的影响。时间延迟是网络物理系统中不可避免的现象,并且对无人机的控制器设计和轨迹产生具有重要意义。时间延迟对无人机动态的影响随着基于视力较慢的导航堆栈的使用而增加。我们表明,文献中的现有模型不包括时间延迟,不适合控制器调整,因为一个微不足道的解决方案始终存在错误的解决方案。我们确定的微不足道的解决方案表明,使用无限控制器的利益来实现最佳性能,这与实际发现相矛盾。我们通过引入无人机的新型非线性时间延迟模型来避免这种缺点,然后获得与每个UAV控制回路相对应的一组线性解耦模型。分析了角度和高度动力学的线性时间延迟模型的成本函数,与无延迟模型相反,我们显示了有限的最佳控制器参数的存在。由于使用了时间延迟模型,我们在实验上表明,所提出的模型准确地表示系统稳定性限制。由于时间延迟的考虑,我们使用基于视觉探视的无人机(VO)导航,在跟踪峰值速度为2.09 m/s的lemsistate轨迹时,我们实现了RMSE 5.01 cm的跟踪结果,这与最新-艺术。
translated by 谷歌翻译
我们提出了通过现实的模拟和现实世界实验来支持可复制研究的多运动无人机控制(UAV)和估计系统。我们提出了一个独特的多帧本地化范式,用于同时使用多个传感器同时估算各种参考框架中的无人机状态。该系统可以在GNSS和GNSS贬低的环境中进行复杂的任务,包括室外室内过渡和执行冗余估计器,以备份不可靠的本地化源。提出了两种反馈控制设计:一个用于精确和激进的操作,另一个用于稳定和平稳的飞行,并进行嘈杂的状态估计。拟议的控制和估计管道是在3D中使用Euler/Tait-Bryan角度表示的,而无需使用Euler/Tait-Bryan角度表示。取而代之的是,我们依靠旋转矩阵和一个新颖的基于标题的惯例来代表标准多电流直升机3D中的一个自由旋转自由度。我们提供了积极维护且有据可查的开源实现,包括对无人机,传感器和本地化系统的现实模拟。拟议的系统是多年应用系统,空中群,空中操纵,运动计划和遥感的多年研究产物。我们所有的结果都得到了现实世界中的部署的支持,该系统部署将系统塑造成此处介绍的表单。此外,该系统是在我们团队从布拉格的CTU参与期间使用的,该系统在享有声望的MBZIRC 2017和2020 Robotics竞赛中,还参加了DARPA SubT挑战赛。每次,我们的团队都能在世界各地最好的竞争对手中获得最高位置。在每种情况下,挑战都促使团队改善系统,并在紧迫的期限内获得大量高质量的体验。
translated by 谷歌翻译
近年来,空中机器人背景下的高速导航和环境互动已成为几个学术和工业研究研究的兴趣领域。特别是,由于其若干环境中的潜在可用性,因此搜索和拦截(SAI)应用程序造成引人注目的研究区域。尽管如此,SAI任务涉及有关感官权重,板载计算资源,致动设计和感知和控制算法的具有挑战性的发展。在这项工作中,已经提出了一种用于高速对象抓握的全自动空中机器人。作为一个额外的子任务,我们的系统能够自主地刺穿位于靠近表面的杆中的气球。我们的第一款贡献是在致动和感觉水平的致动和感觉水平的空中机器人的设计,包括具有额外传感器的新型夹具设计,使机器人能够高速抓住物体。第二种贡献是一种完整的软件框架,包括感知,状态估计,运动计划,运动控制和任务控制,以便快速且强大地执行自主掌握任务。我们的方法已在一个具有挑战性的国际竞争中验证,并显示出突出的结果,能够在室外环境中以6米/分来自动搜索,遵循和掌握移动物体
translated by 谷歌翻译
开发了一个领导者追随者系统,用于合作运输。据我们所知,这是一个不需要互联通信的第一工作,并且可以实时修改有效载荷的参考轨迹,以便它可以应用于动态变化的环境。为了在无通信条件下实时跟踪修改的参考轨迹,引导跟随系统被认为是非文展系统,其中开发了控制器以实现有效载荷的渐近跟踪。为了消除安装力传感器的需要,开发了UKFS(Unscented Kalman滤波器)以估计领导者和追随者所施加的力量。进行稳定性分析以证明闭环系统的跟踪误差。仿真结果表明跟踪控制器的良好性能。实验表明,领导者的控制器和追随者可以在现实世界中工作,但是跟踪误差受到限制空间中气流的干扰的影响。
translated by 谷歌翻译
在过去的十年中,自动驾驶航空运输车辆引起了重大兴趣。这是通过空中操纵器和新颖的握手的技术进步来实现这一目标的。此外,改进的控制方案和车辆动力学能够更好地对有效载荷进行建模和改进的感知算法,以检测无人机(UAV)环境中的关键特征。在这项调查中,对自动空中递送车辆的技术进步和开放研究问题进行了系统的审查。首先,详细讨论了各种类型的操纵器和握手,以及动态建模和控制方法。然后,讨论了降落在静态和动态平台上的。随后,诸如天气状况,州估计和避免碰撞之类的风险以确保安全过境。最后,调查了交付的UAV路由,该路由将主题分为两个领域:无人机操作和无人机合作操作。
translated by 谷歌翻译
本文介绍了设计,开发,并通过IISC-TCS团队为穆罕默德·本·扎耶德国际机器人挑战赛2020年挑战1的目标的挑战1硬件 - 软件系统的测试是抓住从移动和机动悬挂球UAV和POP气球锚定到地面,使用合适的操纵器。解决这一挑战的重要任务包括具有高效抓取和突破机制的硬件系统的设计和开发,考虑到体积和有效载荷的限制,使用适用于室外环境的可视信息的准确目标拦截算法和开发动态多功能机空中系统的软件架构,执行复杂的动态任务。在本文中,设计了具有末端执行器的单个自由度机械手设计用于抓取和突发,并且开发了鲁棒算法以拦截在不确定的环境中的目标。基于追求参与和人工潜在功能的概念提出了基于视觉的指导和跟踪法。本工作中提供的软件架构提出了一种操作管理系统(OMS)架构,其在多个无人机之间协同分配静态和动态任务,以执行任何给定的任务。这项工作的一个重要方面是所有开发的系统都设计用于完全自主模式。在这项工作中还包括对凉亭环境和现场实验结果中完全挑战的模拟的详细描述。所提出的硬件软件系统对反UAV系统特别有用,也可以修改以满足其他几种应用。
translated by 谷歌翻译
Hybrid unmanned aerial vehicles (UAVs) integrate the efficient forward flight of fixed-wing and vertical takeoff and landing (VTOL) capabilities of multicopter UAVs. This paper presents the modeling, control and simulation of a new type of hybrid micro-small UAVs, coined as lifting-wing quadcopters. The airframe orientation of the lifting wing needs to tilt a specific angle often within $ 45$ degrees, neither nearly $ 90$ nor approximately $ 0$ degrees. Compared with some convertiplane and tail-sitter UAVs, the lifting-wing quadcopter has a highly reliable structure, robust wind resistance, low cruise speed and reliable transition flight, making it potential to work fully-autonomous outdoor or some confined airspace indoor. In the modeling part, forces and moments generated by both lifting wing and rotors are considered. Based on the established model, a unified controller for the full flight phase is designed. The controller has the capability of uniformly treating the hovering and forward flight, and enables a continuous transition between two modes, depending on the velocity command. What is more, by taking rotor thrust and aerodynamic force under consideration simultaneously, a control allocation based on optimization is utilized to realize cooperative control for energy saving. Finally, comprehensive Hardware-In-the-Loop (HIL) simulations are performed to verify the advantages of the designed aircraft and the proposed controller.
translated by 谷歌翻译
Many aerial robotic applications require the ability to land on moving platforms, such as delivery trucks and marine research boats. We present a method to autonomously land an Unmanned Aerial Vehicle on a moving vehicle. A visual servoing controller approaches the ground vehicle using velocity commands calculated directly in image space. The control laws generate velocity commands in all three dimensions, eliminating the need for a separate height controller. The method has shown the ability to approach and land on the moving deck in simulation, indoor and outdoor environments, and compared to the other available methods, it has provided the fastest landing approach. Unlike many existing methods for landing on fast-moving platforms, this method does not rely on additional external setups, such as RTK, motion capture system, ground station, offboard processing, or communication with the vehicle, and it requires only the minimal set of hardware and localization sensors. The videos and source codes are also provided.
translated by 谷歌翻译
We address the theoretical and practical problems related to the trajectory generation and tracking control of tail-sitter UAVs. Theoretically, we focus on the differential flatness property with full exploitation of actual UAV aerodynamic models, which lays a foundation for generating dynamically feasible trajectory and achieving high-performance tracking control. We have found that a tail-sitter is differentially flat with accurate aerodynamic models within the entire flight envelope, by specifying coordinate flight condition and choosing the vehicle position as the flat output. This fundamental property allows us to fully exploit the high-fidelity aerodynamic models in the trajectory planning and tracking control to achieve accurate tail-sitter flights. Particularly, an optimization-based trajectory planner for tail-sitters is proposed to design high-quality, smooth trajectories with consideration of kinodynamic constraints, singularity-free constraints and actuator saturation. The planned trajectory of flat output is transformed to state trajectory in real-time with consideration of wind in environments. To track the state trajectory, a global, singularity-free, and minimally-parameterized on-manifold MPC is developed, which fully leverages the accurate aerodynamic model to achieve high-accuracy trajectory tracking within the whole flight envelope. The effectiveness of the proposed framework is demonstrated through extensive real-world experiments in both indoor and outdoor field tests, including agile SE(3) flight through consecutive narrow windows requiring specific attitude and with speed up to 10m/s, typical tail-sitter maneuvers (transition, level flight and loiter) with speed up to 20m/s, and extremely aggressive aerobatic maneuvers (Wingover, Loop, Vertical Eight and Cuban Eight) with acceleration up to 2.5g.
translated by 谷歌翻译
微空中车辆(MAVS)在户外操作的限制靠近障碍物,通过他们承受风阵风的能力。目前广泛的位置控制方法,例如比例整体衍生物控制在阵风的影响下不会均匀。增量非线性动态反转(INDI)是一种基于传感器的控制技术,可以控制受扰动的非线性系统。它是为载人飞机或MAVS的态度控制而开发的。在本文中,我们将这种方法概括为严重燃烧负载下MAV的外环控制。在一个实验中对传统的比例积分衍生物(PID)控制器的显着改进进行了说明,其中四轮电机在10米/秒的吹风机排气进出中。控制方法不依赖于频繁的位置更新,如使用标准GPS模块的外部实验中所示。最后,我们研究了使用线性化来计算推力向量增量的效果,与非线性计算相比。该方法需要很少的建模并且是计算效率。
translated by 谷歌翻译
本文提出了一种新颖的方法,用于在具有复杂拓扑结构的地下领域的搜索和救援行动中自动合作。作为CTU-Cras-Norlab团队的一部分,拟议的系统在DARPA SubT决赛的虚拟轨道中排名第二。与专门为虚拟轨道开发的获奖解决方案相反,该建议的解决方案也被证明是在现实世界竞争极为严峻和狭窄的环境中飞行的机上实体无人机的强大系统。提出的方法可以使无缝模拟转移的无人机团队完全自主和分散的部署,并证明了其优于不同环境可飞行空间的移动UGV团队的优势。该论文的主要贡献存在于映射和导航管道中。映射方法采用新颖的地图表示形式 - 用于有效的风险意识长距离计划,面向覆盖范围和压缩的拓扑范围的LTVMAP领域,以允许在低频道通信下进行多机器人合作。这些表示形式与新的方法一起在导航中使用,以在一般的3D环境中可见性受限的知情搜索,而对环境结构没有任何假设,同时将深度探索与传感器覆盖的剥削保持平衡。所提出的解决方案还包括一条视觉感知管道,用于在没有专用GPU的情况下在5 Hz处进行四个RGB流中感兴趣的对象的板上检测和定位。除了参与DARPA SubT外,在定性和定量评估的各种环境中,在不同的环境中进行了广泛的实验验证,UAV系统的性能得到了支持。
translated by 谷歌翻译
研究界,工业和社会中地面移动机器人(MRS)和无人机(UAV)的重要性正在迅速发展。如今,这些代理中的许多代理都配备了通信系统,在某些情况下,对于成功完成某些任务至关重要。在这种情况下,我们已经开始见证在机器人技术和通信的交集中开发一个新的跨学科研究领域。该研究领域的意图是将无人机集成到5G和6G通信网络中。这项研究无疑将在不久的将来导致许多重要的应用。然而,该研究领域发展的主要障碍之一是,大多数研究人员通过过度简化机器人技术或通信方面来解决这些问题。这阻碍了达到这个新的跨学科研究领域的全部潜力的能力。在本教程中,我们介绍了一些建模工具,从跨学科的角度来解决涉及机器人技术和通信的问题所需的一些建模工具。作为此类问题的说明性示例,我们将重点放在本教程上,讨论通信感知轨迹计划的问题。
translated by 谷歌翻译
本文提出了一项新颖的控制法,以使用尾随机翼无人驾驶飞机(UAV)进行准确跟踪敏捷轨迹,该轨道在垂直起飞和降落(VTOL)和向前飞行之间过渡。全球控制配方可以在整个飞行信封中进行操作,包括与Sideslip的不协调的飞行。显示了具有简化空气动力学模型的非线性尾尾动力学的差异平坦度。使用扁平度变换,提出的控制器结合了位置参考的跟踪及其导数速度,加速度和混蛋以及偏航参考和偏航速率。通过角速度进纸术语包含混蛋和偏航率参考,可以改善随着快速变化的加速度跟踪轨迹。控制器不取决于广泛的空气动力学建模,而是使用增量非线性动态反演(INDI)仅基于局部输入输出关系来计算控制更新,从而导致对简化空气动力学方程中差异的稳健性。非线性输入输出关系的精确反转是通过派生的平坦变换实现的。在飞行测试中对所得的控制算法进行了广泛的评估,在该测试中,它展示了准确的轨迹跟踪和挑战性敏捷操作,例如侧向飞行和转弯时的侵略性过渡。
translated by 谷歌翻译
由于非线性动力学,执行器约束和耦合的纵向和横向运动,部分地,固定翼无人驾驶飞行器(无人机)的姿态控制是一个困难的控制问题。目前的最先进的自动驾驶仪基于线性控制,因此有限于其有效性和性能。深度加强学习(DRL)是一种通过与受控系统的交互自动发现最佳控制法的机器学习方法,可以处理复杂的非线性动态。我们在本文中展示DRL可以成功学习直接在原始非线性动态上运行的固定翼UAV的态度控制,需要短至三分钟的飞行数据。我们最初在仿真环境中培训我们的模型,然后在飞行测试中部署无人机的学习控制器,向最先进的ArduplaneProportional-Integry-artivation(PID)姿态控制器的表现展示了可比的性能,而无需进一步的在线学习。为了更好地理解学习控制器的操作,我们呈现了对其行为的分析,包括与现有良好调整的PID控制器的比较。
translated by 谷歌翻译
空中操纵的生长场通常依赖于完全致动的或全向微型航空车(OMAV),它们可以在与环境接触时施加任意力和扭矩。控制方法通常基于无模型方法,将高级扳手控制器与执行器分配分开。如有必要,在线骚扰观察员拒绝干扰。但是,虽然是一般,但这种方法通常会产生次优控制命令,并且不能纳入平台设计给出的约束。我们提出了两种基于模型的方法来控制OMAV,以实现轨迹跟踪的任务,同时拒绝干扰。第一个通过从实验数据中学到的模型来优化扳手命令并补偿模型错误。第二个功能优化了低级执行器命令,允许利用分配无空格并考虑执行器硬件给出的约束。在现实世界实验中显示和评估两种方法的疗效和实时可行性。
translated by 谷歌翻译
在本文中,我们提出了一种反应性约束导航方案,并避免了无人驾驶汽车(UAV)的嵌入式障碍物,以便在障碍物密集的环境中实现导航。拟议的导航体系结构基于非线性模型预测控制(NMPC),并利用板载2D激光雷达来检测障碍物并在线转换环境的关键几何信息为NMPC的参数约束,以限制可用位置空间的可用位置空间无人机。本文还重点介绍了所提出的反应导航方案的现实实施和实验验证,并将其应用于多个具有挑战性的实验室实验中,我们还与相关的反应性障碍物避免方法进行了比较。提出的方法中使用的求解器是优化引擎(开放)和近端平均牛顿进行最佳控制(PANOC)算法,其中采用了惩罚方法来正确考虑导航任务期间的障碍和输入约束。拟议的新颖方案允许快速解决方案,同时使用有限的车载计算能力,这是无人机的整体闭环性能的必需功能,并在多个实时场景中应用。内置障碍物避免和实时适用性的结合使所提出的反应性约束导航方案成为无人机的优雅框架,能够执行快速的非线性控制,本地路径计划和避免障碍物,所有框架都嵌入了控制层中。
translated by 谷歌翻译
This book provides a solution to the control and motion planning design for an octocopter system. It includes a particular choice of control and motion planning algorithms which is based on the authors' previous research work, so it can be used as a reference design guidance for students, researchers as well as autonomous vehicles hobbyists. The control is constructed based on a fault tolerant approach aiming to increase the chances of the system to detect and isolate a potential failure in order to produce feasible control signals to the remaining active motors. The used motion planning algorithm is risk-aware by means that it takes into account the constraints related to the fault-dependant and mission-related maneuverability analysis of the octocopter system during the planning stage. Such a planner generates only those reference trajectories along which the octocopter system would be safe and capable of good tracking in case of a single motor fault and of majority of double motor fault scenarios. The control and motion planning algorithms presented in the book aim to increase the overall reliability of the system for completing the mission.
translated by 谷歌翻译
该论文讨论了一种基于智能视觉的控制解决方案,用于自主跟踪和降落垂直起飞和降落(VTOL)在船上具有无人驾驶飞机(UAV)的无人使用,而无需使用GPS信号。中心想法涉及自动化海军直升机船着陆程序,该程序将飞行员利用该船作为远程跟踪的视觉参考;但是,是指大多数称为“地平线棒”的海军船上安装的标准化视觉提示,以进行最终进近和着陆阶段。该想法是使用与机器视觉集成的独特设计的非线性控制器实现的。视觉系统利用基于机器学习的对象检测来进行远程船舶跟踪和经典的计算机视觉,以在最终进近和着陆阶段使用地平线估算飞机相对位置和方向。非线性控制器根据视觉系统估计的信息运行,即使在存在不确定性的情况下,也证明了强大的跟踪性能。开发的自动船舶着陆系统是在配备了板载摄像头的四轮摩托车无人机上实施的,在移动的甲板上成功证明了进近和着陆,该甲板模仿了现实的船甲板运动。进行了广泛的模拟和飞行测试,以证明垂直着陆安全性,跟踪能力和着陆精度。
translated by 谷歌翻译
虽然在各种应用中广泛使用刚性机器人,但它们在他们可以执行的任务中受到限制,并且在密切的人机交互中可以保持不安全。另一方面,软机器鞋面超越了刚性机器人的能力,例如与工作环境,自由度,自由度,制造成本和与环境安全互动的兼容性。本文研究了纤维增强弹性机壳(释放)作为一种特定类型的软气动致动器的行为,可用于软装饰器。创建动态集参数模型以在各种操作条件下模拟单一免费的运动,并通知控制器的设计。所提出的PID控制器使用旋转角度来控制多项式函数之后的自由到限定的步进输入或轨迹的响应来控制末端执行器的方向。另外,采用有限元分析方法,包括释放的固有非线性材料特性,精确地评估释放的各种参数和配置。该工具还用于确定模块中多个释放的工作空间,这基本上是软机械臂的构建块。
translated by 谷歌翻译