图像引导放射疗法中的CBCT为患者的设置和计划评估提供了关键的解剖学信息。纵向CBCT图像登记可以量化分裂间的解剖变化。这项研究的目的是提出一个无监督的基于深度学习的CBCT-CBCT变形图像登记。提出的可变形注册工作流程包括训练和推理阶段,这些培训和推理阶段通过基于空间转换的网络(STN)共享相同的进率前路。 STN由全球生成对抗网络(Globalgan)和本地GAN(Localgan)组成,分别预测了粗略和细尺度运动。通过最小化图像相似性损失和可变形矢量场(DVF)正则化损失,而无需监督地面真实DVF的训练,对网络进行了训练。在推理阶段,训练有素的Localgan预测了局部DVF的斑块,并融合形成全图像DVF。随后将局部全图像DVF与Globalgan生成的DVF合并以获得最终的DVF。在实验中,使用来自20名腹部癌症患者的100个分数CBCT评估了该方法,并在保持测试中来自21名不同腹部癌症患者的队列中的105个分数CBCT。从定性上讲,注册结果显示了变形的CBCT图像与目标CBCT图像之间的对齐。定量地,在基准标记和手动确定的地标计算的平均目标注册误差(TRE)为1.91+-1.11 mm。变形CBCT和目标CBCT之间的平均平均绝对误差(MAE),归一化的跨相关性(NCC)分别为33.42+-7.48 HU,0.94+-0.04。这种有希望的注册方法可以提供快速准确的纵向CBCT对准,以促进分流的解剖变化分析和预测。
translated by 谷歌翻译
运动估计是用于评估目标器官解剖学和功能的动态医学图像处理的基本步骤。然而,通过评估局部图像相似性通过评估局部图像相似性优化运动场的基于图像的运动估计方法,易于产生令人难以置信的估计,尤其是在大运动的情况下。在这项研究中,我们提供了一种新颖的稀疏密度(DSD)的运动估计框架,其包括两个阶段。在第一阶段,我们处理原始密集图像以提取稀疏地标以表示目标器官解剖拓扑,并丢弃对运动估计不必要的冗余信息。为此目的,我们介绍一个无监督的3D地标检测网络,以提取用于目标器官运动估计的空间稀疏但代表性的地标。在第二阶段,我们从两个不同时间点的两个图像的提取稀疏地标的稀疏运动位移得出。然后,我们通过将稀疏地标位移突出回致密图像域,呈现运动重建网络来构造运动场。此外,我们从我们的两级DSD框架中使用估计的运动场作为初始化,并提高轻量级且有效的迭代优化中的运动估计质量。我们分别评估了两种动态医学成像任务的方法,分别为模型心脏运动和肺呼吸运动。与现有的比较方法相比,我们的方法产生了出色的运动估计精度。此外,广泛的实验结果表明,我们的解决方案可以提取良好代表性解剖标志,而无需手动注释。我们的代码在线公开提供。
translated by 谷歌翻译
Deformable registration of two-dimensional/three-dimensional (2D/3D) images of abdominal organs is a complicated task because the abdominal organs deform significantly and their contours are not detected in two-dimensional X-ray images. We propose a supervised deep learning framework that achieves 2D/3D deformable image registration between 3D volumes and single-viewpoint 2D projected images. The proposed method learns the translation from the target 2D projection images and the initial 3D volume to 3D displacement fields. In experiments, we registered 3D-computed tomography (CT) volumes to digitally reconstructed radiographs generated from abdominal 4D-CT volumes. For validation, we used 4D-CT volumes of 35 cases and confirmed that the 3D-CT volumes reflecting the nonlinear and local respiratory organ displacement were reconstructed. The proposed method demonstrate the compatible performance to the conventional methods with a dice similarity coefficient of 91.6 \% for the liver region and 85.9 \% for the stomach region, while estimating a significantly more accurate CT values.
translated by 谷歌翻译
迄今为止,迄今为止,众所周知,对广泛的互补临床相关任务进行了全面比较了医学图像登记方法。这限制了采用研究进展,以防止竞争方法的公平基准。在过去五年内已经探讨了许多新的学习方法,但优化,建筑或度量战略的问题非常适合仍然是开放的。 Learn2reg涵盖了广泛的解剖学:脑,腹部和胸部,方式:超声波,CT,MRI,群体:患者内部和患者内部和监督水平。我们为3D注册的培训和验证建立了较低的入境障碍,这帮助我们从20多个独特的团队中汇编了65多个单独的方法提交的结果。我们的互补度量集,包括稳健性,准确性,合理性和速度,使得能够独特地位了解当前的医学图像登记现状。进一步分析监督问题的转移性,偏见和重要性,主要是基于深度学习的方法的优越性,并将新的研究方向开放到利用GPU加速的常规优化的混合方法。
translated by 谷歌翻译
基于治疗期间的单投影图像的器官形状重建具有广泛的临床范围,例如在图像引导放射治疗和手术指导中。我们提出了一种图形卷积网络,该网络实现了用于单视点2D投影图像的3D器官网格的可变形登记。该框架使得能够同时训练两种类型的变换:从2D投影图像到位移图,以及从采样的每周顶点特征到满足网格结构的几何约束的3D位移。假设申请放射治疗,验证了2D / 3D可变形的登记性能,用于尚未瞄准迄今为止,即肝脏,胃,十二指肠和肾脏以及胰腺癌的多个腹部器官。实验结果表明,考虑多个器官之间的关系的形状预测可用于预测临床上可接受的准确性的数字重建射线照片的呼吸运动和变形。
translated by 谷歌翻译
在过去的十年中,卷积神经网络(Convnets)主导了医学图像分析领域。然而,发现脉搏的性能仍然可以受到它们无法模拟图像中体素之间的远程空间关系的限制。最近提出了众多视力变压器来解决哀悼缺点,在许多医学成像应用中展示最先进的表演。变压器可以是用于图像配准的强烈候选者,因为它们的自我注意机制能够更精确地理解移动和固定图像之间的空间对应。在本文中,我们呈现透射帧,一个用于体积医学图像配准的混合变压器-Cromnet模型。我们还介绍了三种变速器的变形,具有两个散晶变体,确保了拓扑保存的变形和产生良好校准的登记不确定性估计的贝叶斯变体。使用来自两个应用的体积医学图像的各种现有的登记方法和变压器架构进行广泛验证所提出的模型:患者间脑MRI注册和幻影到CT注册。定性和定量结果表明,传输和其变体导致基线方法的实质性改进,展示了用于医学图像配准的变压器的有效性。
translated by 谷歌翻译
这项研究提出了一种基于深度学习的超声(US)图像引导放射疗法的跟踪方法。拟议的级联深度学习模型由注意力网络,基于掩模区域的卷积神经网络(Mask R-CNN)和长期短期记忆(LSTM)网络组成。注意网络从美国图像到可疑的具有里程碑意义的运动区域,以减少搜索区域。然后,面膜R-CNN在减少区域中产生多个利益区域(ROI)建议,并通过三个网络头确定拟议的地标:边界框回归,提案分类和地标分段。 LSTM网络对连续的图像框架之间的时间关系建模,以进行边界框回归和建议分类。为了合并最终建议,根据顺序框架之间的相似性设计选择方法。该方法在肝脏美国跟踪数据集中测试了医疗图像计算和计算机辅助干预措施(MICCAI)2015年的挑战,其中有三位经验丰富的观察者注释了地标,以获得其平均位置。在24个鉴于我们具有地面真相的序列的24个序列上,所有地标的平均跟踪误差为0.65 +/- 0.56毫米,所有地标的误差均在2 mm之内。我们进一步测试了从测试数据集中的69个地标上提出的模型,该模型具有与训练模式相似的图像模式,从而导致平均跟踪误差为0.94 +/- 0.83 mm。我们的实验结果表明,我们提出的方法使用US图像跟踪肝解剖学地标的可行性和准确性,为放射治疗期间的主动运动管理提供了潜在的解决方案。
translated by 谷歌翻译
深度学习进展到几乎所有医疗领域中最重要的技术之一。特别是在与医学成像有关的领域中,它起着重要作用。然而,在介入放疗(近距离放射治疗)中,深度学习仍处于早期阶段。在这篇综述中,首先,我们研究并审查了深度学习在介入放射疗法和直接相关领域的所有过程中的作用。此外,我们总结了最新的发展。为了重现深度学习算法的结果,必须提供源代码和培训数据。因此,这项工作的第二个重点是分析开源,开放数据和开放模型的可用性。在我们的分析中,我们能够证明深度学习在某些介入放射疗法领域已经起着主要作用,但在其他方面仍然很少出现。然而,随着年份的影响,它的影响正在增加,部分自我推广,但也受到密切相关领域的影响。开源,数据和模型的数量正在增长,但仍然很少,并且在不同的研究小组之间分布不均。不愿发布代码,数据和模型限制了可重复性,并将评估限制为单一机构数据集。总结,深度学习将积极改变介入放射疗法的工作流程,但是在可再现的结果和标准化评估方法方面,有改进的余地。
translated by 谷歌翻译
在这项工作中,我们考虑了成对的跨模式图像注册的任务,这可能会受益于仅利用培训时间可用的其他图像,而这些图像从与注册的图像不同。例如,我们专注于对准主体内的多参数磁共振(MPMR)图像,在T2加权(T2W)扫描和具有高B值(DWI $ _ {high-b} $)的T2加权(T2W)扫描和扩散加权扫描之间。为了在MPMR图像中应用局部性肿瘤,由于相应的功能的可用性,因此认为具有零B值(DWI $ _ {B = 0} $)的扩散扫描被认为更易于注册到T2W。我们使用仅训练成像模态DWI $ _ {b = 0} $从特权模式算法中提出了学习,以支持具有挑战性的多模式注册问题。我们根据356名前列腺癌患者的369组3D多参数MRI图像提出了实验结果图像对,与注册前7.96毫米相比。结果还表明,与经典的迭代算法和其他具有/没有其他方式的经典基于测试的基于学习的方法相比,提出的基于学习的注册网络具有可比或更高准确性的有效注册。这些比较的算法也未能在此具有挑战性的应用中产生DWI $ _ {High-B} $和T2W之间的任何明显改进的对齐。
translated by 谷歌翻译
Deformable image registration, i.e., the task of aligning multiple images into one coordinate system by non-linear transformation, serves as an essential preprocessing step for neuroimaging data. Recent research on deformable image registration is mainly focused on improving the registration accuracy using multi-stage alignment methods, where the source image is repeatedly deformed in stages by a same neural network until it is well-aligned with the target image. Conventional methods for multi-stage registration can often blur the source image as the pixel/voxel values are repeatedly interpolated from the image generated by the previous stage. However, maintaining image quality such as sharpness during image registration is crucial to medical data analysis. In this paper, we study the problem of anti-blur deformable image registration and propose a novel solution, called Anti-Blur Network (ABN), for multi-stage image registration. Specifically, we use a pair of short-term registration and long-term memory networks to learn the nonlinear deformations at each stage, where the short-term registration network learns how to improve the registration accuracy incrementally and the long-term memory network combines all the previous deformations to allow an interpolation to perform on the raw image directly and preserve image sharpness. Extensive experiments on both natural and medical image datasets demonstrated that ABN can accurately register images while preserving their sharpness. Our code and data can be found at https://github.com/anonymous3214/ABN
translated by 谷歌翻译
在医学中,图像注册对于图像引导的干预措施和其他临床应用至关重要。但是,很难解决,通过机器学习的出现,最近在该领域的医疗图像注册方面已经取得了很大的进步。深度神经网络的实施为某些医学应用提供了机会,例如在更少的时间内进行图像注册,以高精度,在操作过程中对抗肿瘤中发挥关键作用。当前的研究对基于无监督的深神经网络的医学图像注册研究的最新文献进行了全面的范围审查,其中包括到本领域在此日期中发表的所有相关研究。在这里,我们试图总结医学领域中无监督的基于深度学习的注册方法的最新发展和应用。在当前的全面范围审查中,精心讨论和传达了基本和主要概念,技术,从不同观点,新颖性和未来方向的统计分析。此外,这篇评论希望帮助那些被这一领域铆接的活跃读者深入了解这一激动人心的领域。
translated by 谷歌翻译
纵向形象注册是具有挑战性的,并且由于深学习,尚未受益于主要的性能改善。通过深映像的启发,本文介绍了不同利用的深层架构作为常规,以解决图像登记问题。我们提出了一种称为MIRRBA的特定主题可变形的登记方法,依赖于深的金字塔架构是限制变形场的现有参数模型。 MIRRBA不需要学习数据库,而是仅登记的图像,以便注册一对图像以优化网络参数并提供变形字段并提供变形字段。我们展示了深度架构的正规化力量,并呈现了新的元素,以了解架构在注册的深度学习方法中的作用。因此,要研究网络参数的影响,我们在110个转移乳腺癌全身宠物图像的私有数据集中运行了不同的架构配置,具有大脑,膀胱和转移性病变的手动分割。我们将其与传统的迭代登记方法进行比较和监督基于深度学习的模型。使用检测率和骰子分数评估全局和局部注册准确性,而使用雅加诺的决定因素评估登记现实。此外,我们计算了不同方法以消失的速率缩小消失的病变的能力。 MIRRBA显着改善了监督模型的器官和病变骰子分数。关于消失率,MIRRBA多倍于最佳性能的传统方法SYNCC得分。因此,我们的工作提出了一种替代方法来弥合常规和深度学习的方法之间的性能差距,并展示了深度架构的规律力量。
translated by 谷歌翻译
Coronary Computed Tomography Angiography (CCTA) provides information on the presence, extent, and severity of obstructive coronary artery disease. Large-scale clinical studies analyzing CCTA-derived metrics typically require ground-truth validation in the form of high-fidelity 3D intravascular imaging. However, manual rigid alignment of intravascular images to corresponding CCTA images is both time consuming and user-dependent. Moreover, intravascular modalities suffer from several non-rigid motion-induced distortions arising from distortions in the imaging catheter path. To address these issues, we here present a semi-automatic segmentation-based framework for both rigid and non-rigid matching of intravascular images to CCTA images. We formulate the problem in terms of finding the optimal \emph{virtual catheter path} that samples the CCTA data to recapitulate the coronary artery morphology found in the intravascular image. We validate our co-registration framework on a cohort of $n=40$ patients using bifurcation landmarks as ground truth for longitudinal and rotational registration. Our results indicate that our non-rigid registration significantly outperforms other co-registration approaches for luminal bifurcation alignment in both longitudinal (mean mismatch: 3.3 frames) and rotational directions (mean mismatch: 28.6 degrees). By providing a differentiable framework for automatic multi-modal intravascular data fusion, our developed co-registration modules significantly reduces the manual effort required to conduct large-scale multi-modal clinical studies while also providing a solid foundation for the development of machine learning-based co-registration approaches.
translated by 谷歌翻译
通常需要对术前和术后大脑图像进行注册,以评估脑神经胶质瘤治疗的有效性。尽管最近基于深度学习的可变形注册方法在健康的大脑图像方面取得了显着的成功,但由于参考图像中缺乏对应关系,它们中的大多数人将无法与病理相处。在本文中,我们提出了一种基于深度学习的可变形登记方法,该方法共同估计缺乏对应关系和双向变形场的区域。前向后的一致性约束用于帮助从两个图像中缺乏对应关系的体素的切除和复发区域的定位。来自Brats-Reg挑战的3D临床数据的结果表明,与传统和深度学习的注册方法相比,我们的方法可以改善图像对齐方式,无论是否具有成本函数掩盖策略。源代码可在https://github.com/cwmok/dirac上获得。
translated by 谷歌翻译
前列腺活检和图像引导的治疗程序通常是在与磁共振图像(MRI)的超声指导下进行的。准确的图像融合依赖于超声图像上前列腺的准确分割。然而,超声图像中降低的信噪比和工件(例如,斑点和阴影)限制了自动前列腺分割技术的性能,并将这些方法推广到新的图像域是本质上很难的。在这项研究中,我们通过引入一种新型的2.5D深神经网络来解决这些挑战,用于超声图像上的前列腺分割。我们的方法通过组合有监督的域适应技术和知识蒸馏损失,解决了转移学习和填充方法的局限性(即,在更新模型权重时,在更新模型权重时的性能下降)。知识蒸馏损失允许保留先前学习的知识,并在新数据集上的模型填充后降低性能下降。此外,我们的方法依赖于注意模块,该模块认为模型特征定位信息以提高分割精度。我们对一个机构的764名受试者进行了培训,并仅使用后续机构中的十个受试者对我们的模型进行了审核。我们分析了方法在三个大型数据集上的性能,其中包括来自三个不同机构的2067名受试者。我们的方法达到了平均骰子相似性系数(骰子)为$ 94.0 \ pm0.03 $,而Hausdorff距离(HD95)为2.28 $ mm $,在第一机构的独立受试者中。此外,我们的模型在其他两个机构的研究中都很好地概括了(骰子:$ 91.0 \ pm0.03 $; hd95:3.7 $ mm $ and Dice:$ 82.0 \ pm0.03 $; hd95 $; hd95:7.1 $ mm $)。
translated by 谷歌翻译
在目前的生物和医学研究中,统计形状建模(SSM)提供了解剖/形态学表征的基本框架。这种分析通常通过识别群体样本中发现的相对少量的几何一致性特征来驱动。这些特征随后可以提供有关人口形状变化的信息。密集的对应模型可以提供易于计算,并在后面减小时产生可解释的低维形状描述符。然而,用于获得这种对应关系的自动方法通常需要图像分割,然后是显着的预处理,这在计算和人力资源方面都是征税。在许多情况下,分段和后续处理需要手动指导和解剖学特定域专业知识。本文提出了一种自我监督的深度学习方法,用于发现可以直接用作形状描述符的图像中的地标进行分析。我们使用地标驱动的图像登记作为主要任务,以强制神经网络发现井注册图像的地标。我们还提出了一个正则化术语,允许对神经网络的稳健优化进行稳健优化,并确保地标均匀跨越图像域。所提出的方法避免分割和预处理,并直接使用仅2D或3D图像产生可用的形状描述符。此外,我们还提出了在训练损失函数上提出了两个变体,允许将现有的形状信息集成到模型中。我们在几个2D和3D数据集上应用此框架以获取其形状描述符,并分析其实用程序以获取各种应用程序。
translated by 谷歌翻译
全身动态PET中的受试者运动引入了框架间的不匹配,并严重影响参数成像。传统的非刚性注册方法通常在计算上是强度且耗时的。深度学习方法在快速速度方面实现高精度方面是有希望的,但尚未考虑示踪剂分布变化或整体范围。在这项工作中,我们开发了一个无监督的自动深度学习框架,以纠正框架间的身体运动。运动估计网络是一个卷积神经网络,具有联合卷积长的短期记忆层,充分利用动态的时间特征和空间信息。我们的数据集在90分钟的FDG全身动态PET扫描中包含27个受试者。与传统和深度学习基线相比,具有9倍的交叉验证,我们证明了拟议的网络在增强的定性和定量空间对齐方面获得了卓越的性能在显着降低参数拟合误差中。我们还展示了拟议的运动校正方法的潜力来影响对估计参数图像的下游分析,从而提高了将恶性与良性多代谢区域区分开的能力。一旦受过培训,我们提出的网络的运动估计推理时间比常规注册基线快460倍,表明其潜力很容易应用于临床环境中。
translated by 谷歌翻译
在图像登记中,许多努力已经致力于开发流行的标准化互信息标准的替代方案。同时对这些努力,越来越多的作品已经证明了登记准确性的大量收益也可以通过对准图像的结构表示而不是图像本身来实现的。在这条研究路径之后,我们提出了一种基于从诸如梯度矢量流场的结构信息的正则化矢量字段的对准来提出一种新方法,如梯度向量流字段,我们调用\ Texit {Vector Field Mettionity}。我们的方法可以通过将矢量字段相似与基于强度的注册的替换方法相似,以直接的方式与任何现有的登记框架组合。在我们的实验中,我们表明所提出的方法在几个公共图像数据集上使用多样性的成像方式和解剖位置对几个公共图像数据集进行了比较。
translated by 谷歌翻译
可变形的图像注册对于许多医学图像分析是基础。准确图像注册的关键障碍在于图像外观变化,例如纹理,强度和噪声的变化。这些变化在医学图像中很明显,尤其是在经常使用注册的大脑图像中。最近,使用深神经网络的基于深度学习的注册方法(DLR)显示了计算效率,比基于传统优化的注册方法(ORS)快几个数量级。 DLR依靠一个全球优化的网络,该网络经过一组培训样本训练以实现更快的注册。但是,DLR倾向于无视ORS固有的目标对特异性优化,因此已经降低了对测试样品变化的适应性。这种限制对于注册出现较大的医学图像的限制是严重的,尤其是因为很少有现有的DLR明确考虑了外观的变化。在这项研究中,我们提出了一个外观调整网络(AAN),以增强DLR对外观变化的适应性。当我们集成到DLR中时,我们的AAN提供了外观转换,以减少注册过程中的外观变化。此外,我们提出了一个由解剖结构约束的损失函数,通过该函数,我们的AAN产生了解剖结构的转化。我们的AAN被目的设计为容易插入广泛的DLR中,并且可以以无监督和端到端的方式进行合作培训。我们用三个最先进的DLR评估了3D脑磁共振成像(MRI)的三个公共数据集(MRI)。结果表明,我们的AAN始终提高了现有的DLR,并且在注册精度上优于最先进的OR,同时向现有DLR增加了分数计算负载。
translated by 谷歌翻译
心肌运动和变形是表征心脏功能的丰富描述符。图像注册是心肌运动跟踪最常用的技术,是一个不当的反问题,通常需要先前对解决方案空间进行假设。与大多数现有的方法相反,它们强加了明确的通用正则化(例如平滑度),在这项工作中,我们提出了一种新的方法,该方法可以隐式地学习了特定于应用程序的生物力学知识,并将其嵌入了神经网络参数化转换模型中。尤其是,提出的方法利用基于变异自动编码器的生成模型来学习生物力学上合理变形的多种多样。然后,可以通过穿越学习的歧管来搜索最佳转换时,在考虑序列信息时搜索最佳转换。该方法在三个公共心脏Cine MRI数据集中进行了验证,并具有全面的评估。结果表明,所提出的方法可以胜过其他方法,从而获得更高的运动跟踪精度,并具有合理的量保存和更好地变化数据分布的概括性。它还可以更好地估计心肌菌株,这表明该方法在表征时空特征以理解心血管疾病方面的潜力。
translated by 谷歌翻译