本文提出了一个统一的框架到(i)找到球,(ii)预测姿势,(iii)在团队体育场景中分段播放器的实例掩码。这些问题对自动体育分析,生产和广播有高兴趣。常见做法是通过利用通用最先进的模型,例如Panoptic-Deeblab来单独解决每个问题,用于玩家分割。除了从单任务模型的乘法乘以增加的复杂性之外,由于团队体育场景的复杂性和特异性,使用现成的架子模型也会阻碍性能,如强大的遮挡和运动模糊。为了规避这些限制,我们的论文提出培训一种单一的模型,它通过组合零件强度场和空间嵌入原理来预测球和玩家掩模和姿势。部件强度场提供球和播放器位置,以及播放器接头位置。然后利用空间嵌入来将播放器实例像素联系到其各自的播放器中心,而且还将播放器接头分组成骷髅。我们展示了拟议模型在DeepSport篮球数据集上的有效性,为单独解决每个单独任务的SOA模型实现了可比性的性能。
translated by 谷歌翻译
我们提出了一种用于多实例姿态估计的端到端培训方法,称为诗人(姿势估计变压器)。将卷积神经网络与变压器编码器 - 解码器架构组合,我们将多个姿势估计从图像标记为直接设置预测问题。我们的模型能够使用双方匹配方案直接出现所有个人的姿势。诗人使用基于集的全局损失进行培训,该丢失包括关键点损耗,可见性损失和载重损失。诗歌的原因与多个检测到的个人与完整图像上下文之间的关系直接预测它们并行姿势。我们展示诗人在Coco Keypoint检测任务上实现了高精度,同时具有比其他自下而上和自上而下的方法更少的参数和更高推理速度。此外,在将诗人应用于动物姿势估计时,我们表现出了成功的转移学习。据我们所知,该模型是第一个端到端的培训多实例姿态估计方法,我们希望它将成为一种简单而有前途的替代方案。
translated by 谷歌翻译
本文介绍了使用变压器解决关键点检测和实例关联的新方法。对于自下而上的多人姿势估计模型,他们需要检测关键点并在关键点之间学习关联信息。我们认为这些问题可以完全由变压器解决。具体而言,变压器中的自我关注测量任何一对位置之间的依赖性,这可以为关键点分组提供关联信息。但是,天真的注意力模式仍然没有主观控制,因此无法保证关键点始终会参加它们所属的实例。为了解决它,我们提出了一种监督多人关键点检测和实例关联的自我关注的新方法。通过使用实例掩码来监督自我关注的实例感知,我们可以基于成对引人注定分数为其对应的实例分配检测到的关键字,而无需使用预定义的偏移量字段或嵌入像基于CNN的自下而上模型。我们方法的另一个好处是可以从监督的注意矩阵直接获得任何数量的人的实例分段结果,从而简化了像素分配管道。对Coco多人关键点检测挑战和人实例分割任务的实验证明了所提出的方法的有效性和简单性,并显示出于针对特定目的控制自我关注行为的有希望的方法。
translated by 谷歌翻译
In this work, we introduce Panoptic-DeepLab, a simple, strong, and fast system for panoptic segmentation, aiming to establish a solid baseline for bottom-up methods that can achieve comparable performance of two-stage methods while yielding fast inference speed. In particular, Panoptic-DeepLab adopts the dual-ASPP and dual-decoder structures specific to semantic, and instance segmentation, respectively. The semantic segmentation branch is the same as the typical design of any semantic segmentation model (e.g., DeepLab), while the instance segmentation branch is class-agnostic, involving a simple instance center regression. As a result, our single Panoptic-DeepLab simultaneously ranks first at all three Cityscapes benchmarks, setting the new state-of-art of 84.2% mIoU, 39.0% AP, and 65.5% PQ on test set. Additionally, equipped with MobileNetV3, Panoptic-DeepLab runs nearly in real-time with a single 1025 × 2049 image (15.8 frames per second), while achieving a competitive performance on Cityscapes (54.1 PQ% on test set). On Mapillary Vistas test set, our ensemble of six models attains 42.7% PQ, outperforming the challenge winner in 2018 by a healthy margin of 1.5%. Finally, our Panoptic-DeepLab also performs on par with several topdown approaches on the challenging COCO dataset. For the first time, we demonstrate a bottom-up approach could deliver state-of-the-art results on panoptic segmentation.
translated by 谷歌翻译
Realtime multi-person 2D pose estimation is a key component in enabling machines to have an understanding of people in images and videos. In this work, we present a realtime approach to detect the 2D pose of multiple people in an image. The proposed method uses a nonparametric representation, which we refer to as Part Affinity Fields (PAFs), to learn to associate body parts with individuals in the image. This bottom-up system achieves high accuracy and realtime performance, regardless of the number of people in the image. In previous work, PAFs and body part location estimation were refined simultaneously across training stages. We demonstrate that a PAF-only refinement rather than both PAF and body part location refinement results in a substantial increase in both runtime performance and accuracy. We also present the first combined body and foot keypoint detector, based on an internal annotated foot dataset that we have publicly released. We show that the combined detector not only reduces the inference time compared to running them sequentially, but also maintains the accuracy of each component individually. This work has culminated in the release of OpenPose, the first open-source realtime system for multi-person 2D pose detection, including body, foot, hand, and facial keypoints.
translated by 谷歌翻译
在诸如人类姿态估计的关键点估计任务中,尽管具有显着缺点,但基于热线的回归是主要的方法:Heatmaps本质上遭受量化误差,并且需要过多的计算来产生和后处理。有动力寻找更有效的解决方案,我们提出了一种新的热映射无关声点估计方法,其中各个关键点和空间相关的关键点(即,姿势)被建模为基于密集的单级锚的检测框架内的对象。因此,我们将我们的方法Kapao(发音为“KA-Pow!”)对于关键点并作为对象构成。我们通过同时检测人姿势对象和关键点对象并融合检测来利用两个对象表示的强度来将Kapao应用于单阶段多人人类姿势估算问题。在实验中,我们观察到Kapao明显比以前的方法更快,更准确,这极大地来自热爱处理后处理。此外,在不使用测试时间增强时,精度速度折衷特别有利。我们的大型型号Kapao-L在Microsoft Coco Keypoints验证集上实现了70.6的AP,而无需测试时增强,其比下一个最佳单级模型更准确,4.0 AP更准确。此外,Kapao在重闭塞的存在下擅长。在繁荣试验套上,Kapao-L为一个单级方法实现新的最先进的准确性,AP为68.9。
translated by 谷歌翻译
本文调查了2D全身人类姿势估计的任务,该任务旨在将整个人体(包括身体,脚,脸部和手)局部定位在整个人体上。我们提出了一种称为Zoomnet的单网络方法,以考虑到完整人体的层次结构,并解决不同身体部位的规模变化。我们进一步提出了一个称为Zoomnas的神经体系结构搜索框架,以促进全身姿势估计的准确性和效率。Zoomnas共同搜索模型体系结构和不同子模块之间的连接,并自动为搜索的子模块分配计算复杂性。为了训练和评估Zoomnas,我们介绍了第一个大型2D人类全身数据集,即可可叶全体V1.0,它注释了133个用于野外图像的关键点。广泛的实验证明了Zoomnas的有效性和可可叶v1.0的重要性。
translated by 谷歌翻译
本文介绍了Houghnet,这是一种单阶段,无锚,基于投票的,自下而上的对象检测方法。受到广义的霍夫变换的启发,霍尼特通过在该位置投票的总和确定了某个位置的物体的存在。投票是根据对数极极投票领域的近距离和长距离地点收集的。由于这种投票机制,Houghnet能够整合近距离和远程的班级条件证据以进行视觉识别,从而概括和增强当前的对象检测方法,这通常仅依赖于本地证据。在可可数据集中,Houghnet的最佳型号达到$ 46.4 $ $ $ ap $(和$ 65.1 $ $ $ ap_ {50} $),与自下而上的对象检测中的最先进的作品相同,超越了最重要的一项 - 阶段和两阶段方法。我们进一步验证了提案在其他视觉检测任务中的有效性,即视频对象检测,实例分割,3D对象检测和人为姿势估计的关键点检测以及其他“图像”图像生成任务的附加“标签”,其中集成的集成在所有情况下,我们的投票模块始终提高性能。代码可在https://github.com/nerminsamet/houghnet上找到。
translated by 谷歌翻译
Accurate whole-body multi-person pose estimation and tracking is an important yet challenging topic in computer vision. To capture the subtle actions of humans for complex behavior analysis, whole-body pose estimation including the face, body, hand and foot is essential over conventional body-only pose estimation. In this paper, we present AlphaPose, a system that can perform accurate whole-body pose estimation and tracking jointly while running in realtime. To this end, we propose several new techniques: Symmetric Integral Keypoint Regression (SIKR) for fast and fine localization, Parametric Pose Non-Maximum-Suppression (P-NMS) for eliminating redundant human detections and Pose Aware Identity Embedding for jointly pose estimation and tracking. During training, we resort to Part-Guided Proposal Generator (PGPG) and multi-domain knowledge distillation to further improve the accuracy. Our method is able to localize whole-body keypoints accurately and tracks humans simultaneously given inaccurate bounding boxes and redundant detections. We show a significant improvement over current state-of-the-art methods in both speed and accuracy on COCO-wholebody, COCO, PoseTrack, and our proposed Halpe-FullBody pose estimation dataset. Our model, source codes and dataset are made publicly available at https://github.com/MVIG-SJTU/AlphaPose.
translated by 谷歌翻译
在多人2D姿势估计中,自下而上的方法同时预测了所有人的姿势,与自上而下的方法不同,不依赖于人类的检测。但是,与现有的自上而下方法相比,SOTA自下而上的方法的精度仍然不如较低。这是由于预测的人类姿势是根据不一致的人类边界箱中心进行回归的,并且缺乏人类规范的正常化,从而导致预测的人类姿势被遗漏了不准确和小规模的人。为了推动自下而上的姿势估计的信封,我们首先提出了多尺度训练,以增强网络以通过单尺度测试来处理规模变化,尤其是对于小规模的人。其次,我们介绍了双解剖中心(即头部和身体),在这里我们可以更准确,可靠地预测人类的姿势,尤其是对于小规模的人。此外,现有的自下而上方法采用多尺度测试来以多个额外的前向通行证的价格提高姿势估计的准确性,这削弱了自下而上方法的效率,与自上而下的方法相比,核心强度。相比之下,我们的多尺度训练使该模型能够预测单个前向通行证(即单尺度测试)中的高质量姿势。我们的方法在边界框的精度方面取得了38.4 \%的改进,在边界框上进行了39.1 \%的改进,以对可可的具有挑战性的小规模人群进行对现状(SOTA)的回忆(SOTA)。对于人类姿势AP评估,我们在带有单尺度测试的可可测试-DEV集中实现了新的SOTA(71.0 AP)。我们还在跨数据库评估中在Ochuman数据集上实现了最高的性能(40.3 AP)。
translated by 谷歌翻译
In this paper, we are interested in the human pose estimation problem with a focus on learning reliable highresolution representations. Most existing methods recover high-resolution representations from low-resolution representations produced by a high-to-low resolution network. Instead, our proposed network maintains high-resolution representations through the whole process.We start from a high-resolution subnetwork as the first stage, gradually add high-to-low resolution subnetworks one by one to form more stages, and connect the mutliresolution subnetworks in parallel. We conduct repeated multi-scale fusions such that each of the high-to-low resolution representations receives information from other parallel representations over and over, leading to rich highresolution representations. As a result, the predicted keypoint heatmap is potentially more accurate and spatially more precise. We empirically demonstrate the effectiveness of our network through the superior pose estimation results over two benchmark datasets: the COCO keypoint detection dataset and the MPII Human Pose dataset. In addition, we show the superiority of our network in pose tracking on the PoseTrack dataset. The code and models have been publicly available at https://github.com/leoxiaobin/ deep-high-resolution-net.pytorch.
translated by 谷歌翻译
Its numerous applications make multi-human 3D pose estimation a remarkably impactful area of research. Nevertheless, assuming a multiple-view system composed of several regular RGB cameras, 3D multi-pose estimation presents several challenges. First of all, each person must be uniquely identified in the different views to separate the 2D information provided by the cameras. Secondly, the 3D pose estimation process from the multi-view 2D information of each person must be robust against noise and potential occlusions in the scenario. In this work, we address these two challenges with the help of deep learning. Specifically, we present a model based on Graph Neural Networks capable of predicting the cross-view correspondence of the people in the scenario along with a Multilayer Perceptron that takes the 2D points to yield the 3D poses of each person. These two models are trained in a self-supervised manner, thus avoiding the need for large datasets with 3D annotations.
translated by 谷歌翻译
The topic of multi-person pose estimation has been largely improved recently, especially with the development of convolutional neural network. However, there still exist a lot of challenging cases, such as occluded keypoints, invisible keypoints and complex background, which cannot be well addressed. In this paper, we present a novel network structure called Cascaded Pyramid Network (CPN) which targets to relieve the problem from these "hard" keypoints. More specifically, our algorithm includes two stages: Glob-alNet and RefineNet. GlobalNet is a feature pyramid network which can successfully localize the "simple" keypoints like eyes and hands but may fail to precisely recognize the occluded or invisible keypoints. Our RefineNet tries explicitly handling the "hard" keypoints by integrating all levels of feature representations from the Global-Net together with an online hard keypoint mining loss. In general, to address the multi-person pose estimation problem, a top-down pipeline is adopted to first generate a set of human bounding boxes based on a detector, followed by our CPN for keypoint localization in each human bounding box. Based on the proposed algorithm, we achieve stateof-art results on the COCO keypoint benchmark, with average precision at 73.0 on the COCO test-dev dataset and 72.1 on the COCO test-challenge dataset, which is a 19% relative improvement compared with 60.5 from the COCO 2016 keypoint challenge. Code 1 and the detection results are publicly available for further research.
translated by 谷歌翻译
随着深度学习的最新发展应用于计算机视觉,体育视频的理解引起了很多关注,为体育消费者和联赛提供了更丰富的信息。本文介绍了DeepSportradar-V1,这是一套计算机视觉任务,数据集和基准,以自动化运动。该框架的主要目的是缩小学术研究和现实世界环境之间的差距。为此,数据集提供了高分辨率的原始图像,相机参数和高质量注释。 DeepSportradar目前支持与篮球有关的四项具有挑战性的任务:Ball 3D定位,摄像头校准,播放器实例细分和播放器重新识别。对于四个任务中的每一个,都提供了数据集,目标,性能指标和提议的基线方法的详细说明。为了鼓励对运动理解的先进方法的进一步研究,竞争是在ACM Multimedia 2022会议上的MMSPorts研讨会的一部分组织的,参与者必须开发最先进的方法来解决上述任务。公开可用的四个数据集,开发套件和基线。
translated by 谷歌翻译
Mask r-cnn
分类:
We present a conceptually simple, flexible, and general framework for object instance segmentation. Our approach efficiently detects objects in an image while simultaneously generating a high-quality segmentation mask for each instance. The method, called Mask R-CNN, extends Faster R-CNN by adding a branch for predicting an object mask in parallel with the existing branch for bounding box recognition. Mask R-CNN is simple to train and adds only a small overhead to Faster R-CNN, running at 5 fps. Moreover, Mask R-CNN is easy to generalize to other tasks, e.g., allowing us to estimate human poses in the same framework. We show top results in all three tracks of the COCO suite of challenges, including instance segmentation, bounding-box object detection, and person keypoint detection. Without tricks, Mask R-CNN outperforms all existing, single-model entries on every task, including the COCO 2016 challenge winners. We hope our simple and effective approach will serve as a solid baseline and help ease future research in instance-level recognition. Code will be made available.
translated by 谷歌翻译
我们提出Bapose,一种新颖的自下而上的方法,实现了多人姿态估计的最先进结果。我们的最终培训框架利用了解开的多尺度瀑布架构,并将自适应卷曲融合在拥挤的场景中更准确地推断出闭塞的关键点。由BAPOSE中的解开瀑布模块获得的多尺度表示,利用级联架构中进行逐行滤波的效率,同时保持与空间金字塔配置的多尺度视图相当。我们对挑战性的Coco和Crowdose数据集的结果表明,Bapose是多人姿态估计的高效且稳健的框架,实现了最先进的准确性的显着改善。
translated by 谷歌翻译
Applications in the field of augmented reality or robotics often require joint localisation and 6D pose estimation of multiple objects. However, most algorithms need one network per object class to be trained in order to provide the best results. Analysing all visible objects demands multiple inferences, which is memory and time-consuming. We present a new single-stage architecture called CASAPose that determines 2D-3D correspondences for pose estimation of multiple different objects in RGB images in one pass. It is fast and memory efficient, and achieves high accuracy for multiple objects by exploiting the output of a semantic segmentation decoder as control input to a keypoint recognition decoder via local class-adaptive normalisation. Our new differentiable regression of keypoint locations significantly contributes to a faster closing of the domain gap between real test and synthetic training data. We apply segmentation-aware convolutions and upsampling operations to increase the focus inside the object mask and to reduce mutual interference of occluding objects. For each inserted object, the network grows by only one output segmentation map and a negligible number of parameters. We outperform state-of-the-art approaches in challenging multi-object scenes with inter-object occlusion and synthetic training.
translated by 谷歌翻译
尽管广泛用作可视检测任务的性能措施,但平均精度(AP)In(i)的限制在反映了本地化质量,(ii)对其计算的设计选择的鲁棒性以及其对输出的适用性没有信心分数。 Panoptic质量(PQ),提出评估Panoptic Seationation(Kirillov等,2019)的措施,不会遭受这些限制,而是限于Panoptic Seationation。在本文中,我们提出了基于其本地化和分类质量的视觉检测器的平均匹配误差,提出了定位召回精度(LRP)误差。 LRP错误,最初仅为Oksuz等人进行对象检测。 (2018),不遭受上述限制,适用于所有视觉检测任务。我们还介绍了最佳LRP(OLRP)错误,因为通过置信区获得的最小LRP错误以评估视觉检测器并获得部署的最佳阈值。我们提供对AP和PQ的LRP误差的详细比较分析,并使用七个可视检测任务(即对象检测,关键点检测,实例分割,Panoptic分段,视觉关系检测,使用近100个最先进的视觉检测器零拍摄检测和广义零拍摄检测)使用10个数据集来统一地显示LRP误差提供比其对应物更丰富和更辨别的信息。可用的代码:https://github.com/kemaloksuz/lrp-error
translated by 谷歌翻译
In this paper, we propose a unified panoptic segmentation network (UPSNet) for tackling the newly proposed panoptic segmentation task. On top of a single backbone residual network, we first design a deformable convolution based semantic segmentation head and a Mask R-CNN style instance segmentation head which solve these two subtasks simultaneously. More importantly, we introduce a parameter-free panoptic head which solves the panoptic segmentation via pixel-wise classification. It first leverages the logits from the previous two heads and then innovatively expands the representation for enabling prediction of an extra unknown class which helps better resolve the conflicts between semantic and instance segmentation. Additionally, it handles the challenge caused by the varying number of instances and permits back propagation to the bottom modules in an end-to-end manner. Extensive experimental results on Cityscapes, COCO and our internal dataset demonstrate that our UPSNet achieves stateof-the-art performance with much faster inference. Code has been made available at: https://github.com/ uber-research/UPSNet. * Equal contribution.† This work was done when Hengshuang Zhao was an intern at Uber ATG.
translated by 谷歌翻译
脊柱退化困扰着许多长老,办公室工作者,甚至是年轻世代。有效的药剂或外科干预措施可以帮助缓解退行性脊柱条件。然而,传统的诊断程序往往太费力了。临床专家需要从脊柱磁共振成像(MRI)或计算机断层扫描(CT)图像中检测椎间盘和椎骨作为进行病理诊断或术前评价的初步步骤。已经开发了机器学习系统,以帮助这一程序通常在两级方法之后:首先进行解剖定位,然后进行病理分类。为了更高效和准确的诊断,我们提出了一种单阶段检测框架,称为Spineone,同时定位和分类来自MRI切片的退化椎间盘和椎骨。脊柱内置于以下三个关键技术:1)Keypoint Heatmap的新设计,以促进同时关键点本地化和分类; 2)使用注意力模块更好地区分光盘和椎骨之间的表示; 3)一种新颖的梯度引导的客观协会机制,将多个学习目标与后来的培训阶段相关联。脊髓疾病智能诊断的经验结果Tianchi竞争(SDID-TC)550考试的数据集表明,我们的方法通过大幅度超越现有方法。
translated by 谷歌翻译