Accurate diagnosis and prognosis of Alzheimer's disease are crucial to develop new therapies and reduce the associated costs. Recently, with the advances of convolutional neural networks, methods have been proposed to automate these two tasks using structural MRI. However, these methods often suffer from lack of interpretability, generalization, and can be limited in terms of performance. In this paper, we propose a novel deep framework designed to overcome these limitations. Our framework consists of two stages. In the first stage, we propose a deep grading model to extract meaningful features. To enhance the robustness of these features against domain shift, we introduce an innovative collective artificial intelligence strategy for training and evaluating steps. In the second stage, we use a graph convolutional neural network to better capture AD signatures. Our experiments based on 2074 subjects show the competitive performance of our deep framework compared to state-of-the-art methods on different datasets for both AD diagnosis and prognosis.
translated by 谷歌翻译
阿尔茨海默氏病的准确诊断和预后对于开发新疗法和降低相关成本至关重要。最近,随着卷积神经网络的进步,已经提出了深度学习方法,以使用结构MRI自动化这两个任务。但是,这些方法通常缺乏解释性和泛化,预后表现有限。在本文中,我们提出了一个旨在克服这些局限性的新型深框架。我们的管道包括两个阶段。在第一阶段,使用125个3D U-NET来估计整个大脑的体voxelwise等级得分。然后将所得的3D地图融合,以构建一个可解释的3D分级图,以指示结构水平的疾病严重程度。结果,临床医生可以使用该地图来检测受疾病影响的大脑结构。在第二阶段,分级图和受试者的年龄用于使用图卷积神经网络进行分类。基于216名受试者的实验结果表明,与在不同数据集上进行AD诊断和预后的最新方法相比,我们的深框架的竞争性能。此外,我们发现,使用大量的U-NET处理不同的重叠大脑区域,可以提高所提出方法的概括能力。
translated by 谷歌翻译
阿尔茨海默氏病和额颞痴呆是两种主要痴呆症。它们的准确诊断和分化对于确定特定干预和治疗至关重要。然而,由于临床症状的类似模式,在疾病的早期,这两种痴呆症的鉴别诊断仍然很困难。因此,多种类型痴呆的自动分类具有重要的临床价值。到目前为止,尚未积极探索这一挑战。最近在医学图像领域进行深度学习的发展已经证明了各种分类任务的高性能。在本文中,我们建议利用两种类型的生物标志物:结构分级和结构萎缩。为此,我们首先建议训练大型3D U-NET的合奏,以局部区分健康与痴呆症解剖模式。这些模型的结果是一个可解释的3D分级图,能够指示异常的大脑区域。该地图也可以使用图形卷积神经网络在各种分类任务中被利用。最后,我们建议将深度分级和基于萎缩的分类结合起来,以改善痴呆型识别。与最先进的疾病检测任务和鉴别诊断任务相比,提出的框架表现出竞争性能。
translated by 谷歌翻译
Late-life depression (LLD) is a highly prevalent mood disorder occurring in older adults and is frequently accompanied by cognitive impairment (CI). Studies have shown that LLD may increase the risk of Alzheimer's disease (AD). However, the heterogeneity of presentation of geriatric depression suggests that multiple biological mechanisms may underlie it. Current biological research on LLD progression incorporates machine learning that combines neuroimaging data with clinical observations. There are few studies on incident cognitive diagnostic outcomes in LLD based on structural MRI (sMRI). In this paper, we describe the development of a hybrid representation learning (HRL) framework for predicting cognitive diagnosis over 5 years based on T1-weighted sMRI data. Specifically, we first extract prediction-oriented MRI features via a deep neural network, and then integrate them with handcrafted MRI features via a Transformer encoder for cognitive diagnosis prediction. Two tasks are investigated in this work, including (1) identifying cognitively normal subjects with LLD and never-depressed older healthy subjects, and (2) identifying LLD subjects who developed CI (or even AD) and those who stayed cognitively normal over five years. To the best of our knowledge, this is among the first attempts to study the complex heterogeneous progression of LLD based on task-oriented and handcrafted MRI features. We validate the proposed HRL on 294 subjects with T1-weighted MRIs from two clinically harmonized studies. Experimental results suggest that the HRL outperforms several classical machine learning and state-of-the-art deep learning methods in LLD identification and prediction tasks.
translated by 谷歌翻译
Over the years, Machine Learning models have been successfully employed on neuroimaging data for accurately predicting brain age. Deviations from the healthy brain aging pattern are associated to the accelerated brain aging and brain abnormalities. Hence, efficient and accurate diagnosis techniques are required for eliciting accurate brain age estimations. Several contributions have been reported in the past for this purpose, resorting to different data-driven modeling methods. Recently, deep neural networks (also referred to as deep learning) have become prevalent in manifold neuroimaging studies, including brain age estimation. In this review, we offer a comprehensive analysis of the literature related to the adoption of deep learning for brain age estimation with neuroimaging data. We detail and analyze different deep learning architectures used for this application, pausing at research works published to date quantitatively exploring their application. We also examine different brain age estimation frameworks, comparatively exposing their advantages and weaknesses. Finally, the review concludes with an outlook towards future directions that should be followed by prospective studies. The ultimate goal of this paper is to establish a common and informed reference for newcomers and experienced researchers willing to approach brain age estimation by using deep learning models
translated by 谷歌翻译
功能磁共振成像(fMRI)的功能连通性网络(FCN)数据越来越多地用于诊断脑疾病。然而,最新的研究用来使用单个脑部分析地图集以一定的空间尺度构建FCN,该空间尺度很大程度上忽略了层次范围内不同空间尺度的功能相互作用。在这项研究中,我们提出了一个新型框架,以对脑部疾病诊断进行多尺度FCN分析。我们首先使用一组定义明确的多尺地图像来计算多尺度FCN。然后,我们利用多尺度地图集中各个区域之间具有生物学意义的大脑分层关系,以跨多个空间尺度进行淋巴结池,即“ Atlas指导的池”。因此,我们提出了一个基于多尺度的层次图形卷积网络(MAHGCN),该网络(MAHGCN)建立在图形卷积和ATLAS引导的池上,以全面地从多尺度FCN中详细提取诊断信息。关于1792名受试者的神经影像数据的实验证明了我们提出的方法在诊断阿尔茨海默氏病(AD),AD的前驱阶段(即轻度认知障碍[MCI])以及自闭症谱系障碍(ASD),,AD的前瞻性阶段(即,轻度认知障碍[MCI]),,精度分别为88.9%,78.6%和72.7%。所有结果都显示出我们提出的方法比其他竞争方法具有显着优势。这项研究不仅证明了使用深度学习增强的静止状态fMRI诊断的可行性,而且还强调,值得探索多尺度脑层次结构中的功能相互作用,并将其整合到深度学习网络体系结构中,以更好地理解有关的神经病理学。脑疾病。
translated by 谷歌翻译
背景:虽然卷积神经网络(CNN)实现了检测基于磁共振成像(MRI)扫描的阿尔茨海默病(AD)痴呆的高诊断准确性,但它们尚未应用于临床常规。这是一个重要原因是缺乏模型可理解性。最近开发的用于导出CNN相关性图的可视化方法可能有助于填补这种差距。我们调查了具有更高准确性的模型还依赖于先前知识预定义的判别脑区域。方法:我们培训了CNN,用于检测痴呆症和Amnestic认知障碍(MCI)患者的N = 663 T1加权MRI扫描的AD,并通过交叉验证和三个独立样本验证模型的准确性= 1655例。我们评估了相关评分和海马体积的关联,以验证这种方法的临床效用。为了提高模型可理解性,我们实现了3D CNN相关性图的交互式可视化。结果:跨三个独立数据集,组分离表现出广告痴呆症与控制的高精度(AUC $ \ GEQUQ $ 0.92)和MCI与控制的中等精度(AUC $ \约0.75美元)。相关性图表明海马萎缩被认为是广告检测的最具信息性因素,其其他皮质和皮质区域中的萎缩额外贡献。海马内的相关评分与海马体积高度相关(Pearson的r $ \大约$ -0.86,p <0.001)。结论:相关性地图突出了我们假设先验的地区的萎缩。这加强了CNN模型的可理解性,这些模型基于扫描和诊断标签以纯粹的数据驱动方式培训。
translated by 谷歌翻译
临床实践中使用的医学图像是异质的,与学术研究中研究的扫描质量不同。在解剖学,伪影或成像参数不寻常或方案不同的极端情况下,预处理会分解。最需要对这些变化的方法可靠。提出了一种新颖的深度学习方法,以将人脑快速分割为132个区域。提出的模型使用有效的U-NET型网络,并从不同视图和分层关系的交点上受益,以在端到端训练期间融合正交2D平面和脑标签。部署了弱监督的学习,以利用部分标记的数据来进行整个大脑分割和颅内体积(ICV)的估计。此外,数据增强用于通过生成具有较高的脑扫描的磁共振成像(MRI)数据来扩展模型训练,同时保持数据隐私。提出的方法可以应用于脑MRI数据,包括头骨或任何其他工件,而无需预处理图像或性能下降。与最新的一些实验相比,使用了不同的Atlases的几项实验,以评估受过训练模型的分割性能,并且与不同内部和不同内部和不同内部方法的现有方法相比,结果显示了较高的分割精度和鲁棒性。间域数据集。
translated by 谷歌翻译
Accurate diagnosis of Alzheimer's disease (AD) is both challenging and time consuming. With a systematic approach for early detection and diagnosis of AD, steps can be taken towards the treatment and prevention of the disease. This study explores the practical application of deep learning models for diagnosis of AD. Due to computational complexity, large training times and limited availability of labelled dataset, a 3D full brain CNN (convolutional neural network) is not commonly used, and researchers often prefer 2D CNN variants. In this study, full brain 3D version of well-known 2D CNNs were designed, trained and tested for diagnosis of various stages of AD. Deep learning approach shows good performance in differentiating various stages of AD for more than 1500 full brain volumes. Along with classification, the deep learning model is capable of extracting features which are key in differentiating the various categories. The extracted features align with meaningful anatomical landmarks, that are currently considered important in identification of AD by experts. An ensemble of all the algorithm was also tested and the performance of the ensemble algorithm was superior to any individual algorithm, further improving diagnosis ability. The 3D versions of the trained CNNs and their ensemble have the potential to be incorporated in software packages that can be used by physicians/radiologists to assist them in better diagnosis of AD.
translated by 谷歌翻译
阿尔茨海默病(AD)是一种不可逆的神经发电疾病的大脑。疾病可能会导致记忆力损失,难以沟通和迷失化。对于阿尔茨海默病的诊断,通常需要一系列尺度来临床评估诊断,这不仅增加了医生的工作量,而且还使诊断结果高度主观。因此,对于阿尔茨海默病,成像手段寻找早期诊断标志物已成为一个首要任务。在本文中,我们提出了一种新颖的3DMGNET架构,该架构是多基体和卷积神经网络的统一框架,以诊断阿尔茨海默病(AD)。该模型使用Open DataSet(ADNI DataSet)培训,然后使用较小的DataSet进行测试。最后,该模型为AD VS NC分类实现了92.133%的精度,并显着降低了模型参数。
translated by 谷歌翻译
阿尔茨海默氏病是一种进行性神经退行性疾病,逐渐剥夺患者的认知功能,并可能以死亡结束。随着当今技术的发展,可以通过磁共振成像(MRI)扫描来检测阿尔茨海默氏病。因此,MRI是最常用于诊断和分析阿尔茨海默氏病进展的技术。有了这项技术,可以使用机器学习自动实现对阿尔茨海默氏病的早期诊断的图像识别。尽管机器学习具有许多优势,但目前使用深度学习的应用更广泛地应用,因为它具有更强的学习能力,并且更适合解决图像识别问题。但是,仍然存在一些挑战以实施深度学习,例如对大型数据集的需求,需要大量的计算资源以及需要仔细的参数设置以防止过度拟合或不足。在应对使用深度学习对阿尔茨海默氏病进行分类的挑战时,本研究提出了使用残留网络18层(RESNET-18)体系结构的卷积神经网络(CNN)方法。为了克服对大型且平衡的数据集的需求,使用来自ImageNet的传输学习并加权损耗函数值,以使每个类具有相同的权重。而且,在这项研究中,通过将网络激活函数更改为MISH激活函数以提高准确性,从而进行了实验。从已经进行的测试结果中,使用转移学习,加权损失和MISH激活函数的模型准确性为88.3%。该准确性值来自基线模型,仅获得69.1%的精度。
translated by 谷歌翻译
Mapping the connectome of the human brain using structural or functional connectivity has become one of the most pervasive paradigms for neuroimaging analysis. Recently, Graph Neural Networks (GNNs) motivated from geometric deep learning have attracted broad interest due to their established power for modeling complex networked data. Despite their superior performance in many fields, there has not yet been a systematic study of how to design effective GNNs for brain network analysis. To bridge this gap, we present BrainGB, a benchmark for brain network analysis with GNNs. BrainGB standardizes the process by (1) summarizing brain network construction pipelines for both functional and structural neuroimaging modalities and (2) modularizing the implementation of GNN designs. We conduct extensive experiments on datasets across cohorts and modalities and recommend a set of general recipes for effective GNN designs on brain networks. To support open and reproducible research on GNN-based brain network analysis, we host the BrainGB website at https://braingb.us with models, tutorials, examples, as well as an out-of-box Python package. We hope that this work will provide useful empirical evidence and offer insights for future research in this novel and promising direction.
translated by 谷歌翻译
无创医学神经影像学已经对大脑连通性产生了许多发现。开发了几种实质技术绘制形态,结构和功能性脑连接性,以创建人脑中神经元活动的全面路线图。依靠其非欧国人数据类型,图形神经网络(GNN)提供了一种学习深图结构的巧妙方法,并且它正在迅速成为最先进的方法,从而导致各种网络神经科学任务的性能增强。在这里,我们回顾了当前基于GNN的方法,突出了它们在与脑图有关的几种应用中使用的方式,例如缺失的脑图合成和疾病分类。最后,我们通过绘制了通往网络神经科学领域中更好地应用GNN模型在神经系统障碍诊断和人群图整合中的路径。我们工作中引用的论文列表可在https://github.com/basiralab/gnns-inns-intwork-neuroscience上找到。
translated by 谷歌翻译
生成的对抗网络(GAN)是在众多领域成功使用的一种强大的深度学习模型。它们属于一个称为生成方法的更广泛的家族,该家族通过从真实示例中学习样本分布来生成新数据。在临床背景下,与传统的生成方法相比,GAN在捕获空间复杂,非线性和潜在微妙的疾病作用方面表现出增强的能力。这篇综述评估了有关gan在各种神经系统疾病的成像研究中的应用的现有文献,包括阿尔茨海默氏病,脑肿瘤,脑老化和多发性硬化症。我们为每个应用程序提供了各种GAN方法的直观解释,并进一步讨论了在神经影像学中利用gans的主要挑战,开放问题以及有希望的未来方向。我们旨在通过强调如何利用gan来支持临床决策,并有助于更好地理解脑部疾病的结构和功能模式,从而弥合先进的深度学习方法和神经病学研究之间的差距。
translated by 谷歌翻译
机器学习在医学图像分析中发挥着越来越重要的作用,产卵在神经影像症的临床应用中的新进展。之前有一些关于机器学习和癫痫的综述,它们主要专注于电生理信号,如脑电图(EEG)和立体脑电图(SEENG),同时忽略癫痫研究中神经影像的潜力。 NeuroImaging在确认癫痫区域的范围内具有重要的优点,这对于手术后的前诊所评估和评估至关重要。然而,脑电图难以定位大脑中的准确癫痫病变区。在这篇综述中,我们强调了癫痫诊断和预后在癫痫诊断和预后的背景下神经影像学和机器学习的相互作用。我们首先概述癫痫诊所,MRI,DWI,FMRI和PET中使用的癫痫和典型的神经影像姿态。然后,我们在将机器学习方法应用于神经影像数据的方法:i)将手动特征工程和分类器的传统机器学习方法阐述了两种方法,即卷积神经网络和自动化器等深度学习方法。随后,详细地研究了对癫痫,定位和横向化任务等分割,本地化和横向化任务的应用,以及与诊断和预后直接相关的任务。最后,我们讨论了目前的成就,挑战和潜在的未来方向,希望为癫痫的计算机辅助诊断和预后铺平道路。
translated by 谷歌翻译
膝关节骨关节炎(OA)是最常见的骨关节炎和伤残原因。软骨缺陷被认为是膝关节OA的主要表现,其通过磁共振成像(MRI)可见。因此,对膝关节软骨缺陷的早期检测和评估对于保护膝关节OA患者来说是重要的。通过这种方式,通过将卷积神经网络(CNNS)应用于膝关节MRI,已经在膝关节软骨缺陷评估中进行了许多尝试。然而,软骨的生理特性可能阻碍这种努力:软骨是薄的弯曲层,这意味着只有膝关节MRI中的一小部分体素可以有助于软骨缺陷评估;异构扫描方案进一步挑战CNN在临床实践中的可行性;基于CNN的膝关节软骨评估结果缺乏解释性。为了解决这些挑战,我们将软骨结构和外观模拟到膝关节MRI进入图表表示,该图表能够处理高度多样化的临床数据。然后,由软骨图表示指导,我们设计了一种具有自我关注机制的非欧几里德深度学习网络,提取本地和全局中的软骨功能,并通过可视化结果导出最终评估。我们的综合实验表明,该方法在膝关节软骨缺陷评估中产生了卓越的性能,以及其方便的可解释性3D可视化。
translated by 谷歌翻译
Structural alterations have been thoroughly investigated in the brain during the early onset of schizophrenia (SCZ) with the development of neuroimaging methods. The objective of the paper is an efficient classification of SCZ in 2 different classes: Cognitive Normal (CN), and SCZ using magnetic resonance imaging (MRI) images. This paper proposed a lightweight 3D convolutional neural network (CNN) based framework for SCZ diagnosis using MRI images. In the proposed model, lightweight 3D CNN is used to extract both spatial and spectral features simultaneously from 3D volume MRI scans, and classification is done using an ensemble bagging classifier. Ensemble bagging classifier contributes to preventing overfitting, reduces variance, and improves the model's accuracy. The proposed algorithm is tested on datasets taken from three benchmark databases available as open-source: MCICShare, COBRE, and fBRINPhase-II. These datasets have undergone preprocessing steps to register all the MRI images to the standard template and reduce the artifacts. The model achieves the highest accuracy 92.22%, sensitivity 94.44%, specificity 90%, precision 90.43%, recall 94.44%, F1-score 92.39% and G-mean 92.19% as compared to the current state-of-the-art techniques. The performance metrics evidenced the use of this model to assist the clinicians for automatic accurate diagnosis of SCZ.
translated by 谷歌翻译
目的:多发性硬化症(MS)是一种自身免疫和脱髓鞘疾病,导致中枢神经系统的病变。可以使用磁共振成像(MRI)跟踪和诊断该疾病。到目前为止,多数多层自动生物医学方法用于在成本,时间和可用性方面对患者没有有益的病变。本文的作者提出了一种使用只有一个模态(Flair Image)的方法,准确地将MS病变分段。方法:由3D-Reset和空间通道注意模块进行设计,灵活的基于补丁的卷积神经网络(CNN),以段MS病变。该方法由三个阶段组成:(1)对比度限制自适应直方图均衡(CLAHE)被施加到原始图像并连接到提取的边缘以形成4D图像; (2)尺寸80 * 80 * 80 * 2的贴片从4D图像中随机选择; (3)将提取的贴片传递到用于分割病变的关注的CNN中。最后,将所提出的方法与先前的相同数据集进行比较。结果:目前的研究评估了模型,具有测试集的ISIB挑战数据。实验结果表明,该方法在骰子相似性和绝对体积差方面显着超越了现有方法,而该方法仅使用一种模态(Flair)来分割病变。结论:作者推出了一种自动化的方法来分割基于最多两种方式作为输入的损伤。所提出的架构由卷积,解卷积和SCA-VOXRES模块作为注意模块组成。结果表明,所提出的方法优于与其他方法相比良好。
translated by 谷歌翻译
阿尔茨海默氏病(AD)是痴呆症的最常见形式,由于痴呆症的多因素病因,通常难以诊断。关于基于神经成像的基于神经成像的深度神经网络(DNN)的著作表明,结构磁共振图像(SMRI)和氟脱氧葡萄糖正电子发射层析成像(FDG-PET)可提高健康对照和受试者的研究人群的精度。与广告。但是,这一结果与既定的临床知识冲突,即FDG-PET比SMRI更好地捕获AD特定的病理。因此,我们提出了一个框架,用于对基于FDG-PET和SMRI进行多模式DNN的系统评估,并重新评估单模式DNN和多模式DNN,用于二进制健康与AD,以及三向健康/轻度的健康/轻度认知障碍/广告分类。我们的实验表明,使用FDG-PET的单模式网络的性能优于MRI(准确性0.91 vs 0.87),并且在组合时不会显示出改进。这符合有关AD生物标志物的既定临床知识,但提出了有关多模式DNN的真正好处的问题。我们认为,未来关于多模式融合的工作应系统地评估我们提出的评估框架后的个人模式的贡献。最后,我们鼓励社区超越健康与AD分类,并专注于痴呆症的鉴别诊断,在这种诊断中,在这种诊断中,融合了多模式图像信息与临床需求相符。
translated by 谷歌翻译
Clinical diagnostic and treatment decisions rely upon the integration of patient-specific data with clinical reasoning. Cancer presents a unique context that influence treatment decisions, given its diverse forms of disease evolution. Biomedical imaging allows noninvasive assessment of disease based on visual evaluations leading to better clinical outcome prediction and therapeutic planning. Early methods of brain cancer characterization predominantly relied upon statistical modeling of neuroimaging data. Driven by the breakthroughs in computer vision, deep learning became the de facto standard in the domain of medical imaging. Integrated statistical and deep learning methods have recently emerged as a new direction in the automation of the medical practice unifying multi-disciplinary knowledge in medicine, statistics, and artificial intelligence. In this study, we critically review major statistical and deep learning models and their applications in brain imaging research with a focus on MRI-based brain tumor segmentation. The results do highlight that model-driven classical statistics and data-driven deep learning is a potent combination for developing automated systems in clinical oncology.
translated by 谷歌翻译