本文提出了解码器 - 侧交叉分辨率合成(CRS)模块,以追求更好的压缩效率超出最新的通用视频编码(VVC),在那里我们在原始高分辨率(HR)处编码帧内帧,以较低的分辨率压缩帧帧间( LR),然后通过在先前的HR帧内和相邻的LR帧间帧内解解码LR帧间帧间帧帧。对于LR帧间帧,设计运动对准和聚合网络(MAN)以产生时间汇总的运动表示,以最佳保证时间平滑度;使用另一个纹理补偿网络(TCN)来生成从解码的HR帧内帧的纹理表示,以便更好地增强空间细节;最后,相似性驱动的融合引擎将运动和纹理表示合成为Upscale LR帧帧,以便去除压缩和分辨率重新采样噪声。我们使用所提出的CRS增强VVC,显示平均为8.76%和11.93%BJ {\ O} NTEGAARD Delta率(BD速率)分别在随机接入(RA)和低延延迟P(LDP)设置中的最新VVC锚点。此外,对基于最先进的超分辨率(SR)的VVC增强方法和消融研究的实验比较,进一步报告了所提出的算法的卓越效率和泛化。所有材料都将在HTTPS://njuvision.github.io /crs上公开进行可重复的研究。
translated by 谷歌翻译
为基于几何的点云压缩(G-PCC)标准开发了基于学习的自适应环滤波器,以减少属性压缩工件。提出的方法首先生成多个最可行的样品偏移(MPSO)作为潜在的压缩失真近似值,然后线性权重以减轻伪影。因此,我们将过滤后的重建驱动尽可能靠近未压缩的PCA。为此,我们设计了一个由两个连续的处理阶段组成的压缩工件还原网络(CARNET):MPSOS推导和MPSOS组合。 MPSOS派生使用两个流网络来模拟来自直接空间嵌入和频率依赖性嵌入的局部邻域变化,在该嵌入中,稀疏的卷积被利用可从细微和不规则分布的点中最佳汇总信息。 MPSOS组合由最小平方误量学指导,以进一步捕获输入PCAS的内容动力学,从而得出加权系数。 Carnet作为GPCC的环内过滤工具实现,其中这些线性加权系数被封装在比特斯流中,并以忽略不计的比特率开销。实验结果表明,对最新的GPCC的主观和客观性都显着改善。
translated by 谷歌翻译
本文回顾了关于压缩视频质量增强质量的第一个NTIRE挑战,重点是拟议的方法和结果。在此挑战中,采用了新的大型不同视频(LDV)数据集。挑战有三个曲目。Track 1和2的目标是增强HEVC在固定QP上压缩的视频,而Track 3旨在增强X265压缩的视频,以固定的位速率压缩。此外,轨道1和3的质量提高了提高保真度(PSNR)的目标,以及提高感知质量的2个目标。这三个曲目完全吸引了482个注册。在测试阶段,分别提交了12个团队,8支球队和11支球队,分别提交了轨道1、2和3的最终结果。拟议的方法和解决方案衡量视频质量增强的最先进。挑战的首页:https://github.com/renyang-home/ntire21_venh
translated by 谷歌翻译
在本文中,我们提出了一个生成的对抗网络(GAN)框架,以增强压缩视频的感知质量。我们的框架包括单个模型中对不同量化参数(QP)的注意和适应。注意模块利用了可以捕获和对齐连续框架之间的远程相关性的全球接收场,这可能有益于提高视频感知质量。要增强的框架与其相邻的框架一起馈入深网,并在第一阶段的特征中提取不同深度的特征。然后提取的特征被馈入注意力块以探索全局的时间相关性,然后进行一系列上采样和卷积层。最后,通过利用相应的QP信息的QP条件适应模块处理所得的功能。这样,单个模型可用于增强对各种QP的适应性,而无需针对每个QP值的多个模型,同时具有相似的性能。实验结果表明,与最先进的压缩视频质量增强算法相比,所提出的PEQUENET的表现出色。
translated by 谷歌翻译
本文回顾了AIM 2022上压缩图像和视频超级分辨率的挑战。这项挑战包括两条曲目。轨道1的目标是压缩图像的超分辨率,轨迹〜2靶向压缩视频的超分辨率。在轨道1中,我们使用流行的数据集DIV2K作为培训,验证和测试集。在轨道2中,我们提出了LDV 3.0数据集,其中包含365个视频,包括LDV 2.0数据集(335个视频)和30个其他视频。在这一挑战中,有12支球队和2支球队分别提交了赛道1和赛道2的最终结果。所提出的方法和解决方案衡量了压缩图像和视频上超分辨率的最先进。提出的LDV 3.0数据集可在https://github.com/renyang-home/ldv_dataset上找到。此挑战的首页是在https://github.com/renyang-home/aim22_compresssr。
translated by 谷歌翻译
时空视频超分辨率(STVSR)旨在从相应的低帧速率,低分辨率视频序列构建高空时间分辨率视频序列。灵感来自最近的成功,考虑空间时间超级分辨率的空间信息,我们在这项工作中的主要目标是在快速动态事件的视频序列中充分考虑空间和时间相关性。为此,我们提出了一种新颖的单级内存增强图注意网络(Megan),用于时空视频超分辨率。具体地,我们构建新颖的远程存储图聚合(LMGA)模块,以沿着特征映射的信道尺寸动态捕获相关性,并自适应地聚合信道特征以增强特征表示。我们介绍了一个非本地剩余块,其使每个通道明智的功能能够参加全局空间分层特征。此外,我们采用渐进式融合模块通过广泛利用来自多个帧的空间 - 时间相关性来进一步提高表示能力。实验结果表明,我们的方法与定量和视觉上的最先进的方法相比,实现了更好的结果。
translated by 谷歌翻译
学习的视频压缩最近成为开发高级视频压缩技术的重要研究主题,其中运动补偿被认为是最具挑战性的问题之一。在本文中,我们通过异质变形补偿策略(HDCVC)提出了一个学识渊博的视频压缩框架,以解决由单尺度可变形的特征域中单尺可变形核引起的不稳定压缩性能的问题。更具体地说,所提出的算法提取物从两个相邻框架中提取的算法提取物特征来估算估计内容自适应的异质变形(Hetdeform)内核偏移量,而不是利用光流或单尺内核变形对齐。然后,我们将参考特征转换为HetDeform卷积以完成运动补偿。此外,我们设计了一个空间 - 邻化的分裂归一化(SNCDN),以实现更有效的数据高斯化结合了广义分裂的归一化。此外,我们提出了一个多框架增强的重建模块,用于利用上下文和时间信息以提高质量。实验结果表明,HDCVC比最近最新学习的视频压缩方法取得了优越的性能。
translated by 谷歌翻译
基于常规卷积网络的视频超分辨率(VSR)方法具有很强的视频序列的时间建模能力。然而,在单向反复卷积网络中的不同反复单元接收的输入信息不平衡。早期重建帧接收较少的时间信息,导致模糊或工件效果。虽然双向反复卷积网络可以缓解这个问题,但它大大提高了重建时间和计算复杂性。它也不适用于许多应用方案,例如在线超分辨率。为了解决上述问题,我们提出了一种端到端信息预构建的经常性重建网络(IPRRN),由信息预构建网络(IPNet)和经常性重建网络(RRNET)组成。通过将足够的信息从视频的前面集成来构建初始复发单元所需的隐藏状态,以帮助恢复较早的帧,信息预构建的网络在不向后传播之前和之后的输入信息差异。此外,我们展示了一种紧凑的复发性重建网络,可显着改善恢复质量和时间效率。许多实验已经验证了我们所提出的网络的有效性,并与现有的最先进方法相比,我们的方法可以有效地实现更高的定量和定性评估性能。
translated by 谷歌翻译
时空视频超分辨率(STVSR)的目标是增加低分辨率(LR)和低帧速率(LFR)视频的空间分辨率。基于深度学习的最新方法已取得了重大改进,但是其中大多数仅使用两个相邻帧,即短期功能,可以合成缺失的框架嵌入,这无法完全探索连续输入LR帧的信息流。此外,现有的STVSR模型几乎无法明确利用时间上下文以帮助高分辨率(HR)框架重建。为了解决这些问题,在本文中,我们提出了一个称为STDAN的可变形注意网络。首先,我们设计了一个长短的术语特征插值(LSTFI)模块,该模块能够通过双向RNN结构从更相邻的输入帧中挖掘大量的内容,以进行插值。其次,我们提出了一个空间 - 周期性变形特征聚合(STDFA)模块,其中动态视频框架中的空间和时间上下文被自适应地捕获并汇总以增强SR重建。几个数据集的实验结果表明,我们的方法的表现优于最先进的STVSR方法。该代码可在https://github.com/littlewhitesea/stdan上找到。
translated by 谷歌翻译
Video super-resolution (VSR) aiming to reconstruct a high-resolution (HR) video from its low-resolution (LR) counterpart has made tremendous progress in recent years. However, it remains challenging to deploy existing VSR methods to real-world data with complex degradations. On the one hand, there are few well-aligned real-world VSR datasets, especially with large super-resolution scale factors, which limits the development of real-world VSR tasks. On the other hand, alignment algorithms in existing VSR methods perform poorly for real-world videos, leading to unsatisfactory results. As an attempt to address the aforementioned issues, we build a real-world 4 VSR dataset, namely MVSR4$\times$, where low- and high-resolution videos are captured with different focal length lenses of a smartphone, respectively. Moreover, we propose an effective alignment method for real-world VSR, namely EAVSR. EAVSR takes the proposed multi-layer adaptive spatial transform network (MultiAdaSTN) to refine the offsets provided by the pre-trained optical flow estimation network. Experimental results on RealVSR and MVSR4$\times$ datasets show the effectiveness and practicality of our method, and we achieve state-of-the-art performance in real-world VSR task. The dataset and code will be publicly available.
translated by 谷歌翻译
高速,高分辨率的立体视频(H2-STEREO)视频使我们能够在细粒度上感知动态3D内容。然而,对商品摄像机的收购H2-STEREO视频仍然具有挑战性。现有的空间超分辨率或时间框架插值方法分别提供了缺乏时间或空间细节的折衷解决方案。为了减轻这个问题,我们提出了一个双摄像头系统,其中一台相机捕获具有丰富空间细节的高空间分辨率低框架速率(HSR-LFR)视频,而另一个摄像头则捕获了低空间分辨率的高架框架-Rate(LSR-HFR)视频带有光滑的时间细节。然后,我们设计了一个学习的信息融合网络(LIFNET),该网络利用跨摄像机冗余,以增强两种相机视图,从而有效地重建H2-STEREO视频。即使在大型差异场景中,我们也利用一个差异网络将时空信息传输到视图上,基于该视图,我们建议使用差异引导的LSR-HFR视图基于差异引导的流量扭曲,并针对HSR-LFR视图进行互补的扭曲。提出了特征域中的多尺度融合方法,以最大程度地减少HSR-LFR视图中闭塞引起的翘曲幽灵和孔。 LIFNET使用YouTube收集的高质量立体视频数据集以端到端的方式进行训练。广泛的实验表明,对于合成数据和摄像头捕获的真实数据,我们的模型均优于现有的最新方法。消融研究探讨了各个方面,包括时空分辨率,摄像头基线,摄像头解理,长/短曝光和应用程序,以充分了解其对潜在应用的能力。
translated by 谷歌翻译
我们提出了Neuricam,这是一种基于钥匙帧的视频超分辨率和着色系统,可从双模式IoT摄像机获得低功耗视频捕获。我们的想法是设计一个双模式摄像机系统,其中第一个模式是低功率(1.1〜MW),但仅输出灰度,低分辨率和嘈杂的视频,第二种模式会消耗更高的功率(100〜MW),但输出会输出。颜色和更高分辨率的图像。为了减少总能源消耗,我们在高功率模式下高功率模式仅输出图像每秒一次。然后将来自该相机系统的数据无线流传输到附近的插入网关,在那里我们运行实时神经网络解码器,以重建更高的分辨率颜色视频。为了实现这一目标,我们基于每个空间位置的特征映射和输入框架的内容之间的相关性,引入了一种注意力特征滤波器机制,该机制将不同的权重分配给不同的特征。我们使用现成的摄像机设计无线硬件原型,并解决包括数据包丢失和透视不匹配在内的实用问题。我们的评估表明,我们的双摄像机硬件可减少相机的能耗,同时在先前的视频超级分辨率方法中获得平均的灰度PSNR增益为3.7〜db,而在现有的颜色传播方法上,我们的灰度尺度PSNR增益为3.7 〜db。开源代码:https://github.com/vb000/neuricam。
translated by 谷歌翻译
传统的视频压缩(VC)方法基于运动补偿变换编码,并且由于端到端优化问题的组合性质,运动估计,模式和量化参数选择的步骤和熵编码是单独优化的。学习VC允许同时对端到端速率失真(R-D)优化非线性变换,运动和熵模型的优化训练。大多数工作都在学习VC基于R-D损耗对连续帧的对考虑连续视频编解码器的端到端优化。它在传统的VC中众所周知的是,双向编码优于顺序压缩,因为它能够使用过去和未来的参考帧。本文提出了一种学习的分层双向视频编解码器(LHBDC),其结合了分层运动补偿预测和端到端优化的益处。实验结果表明,我们达到了迄今为​​止在PSNR和MS-SSIM中的学习VC方案报告的最佳R-D结果。与传统的视频编解码器相比,我们的端到端优化编解码器的RD性能优于PSNR和MS-SSIM中的X265和SVT-HEVC编码器(“非常流”预设)以及MS-中的HM 16.23参考软件。 SSIM。我们提出了由于所提出的新颖工具,例如学习屏蔽,流场附带和时间流量矢量预测等新颖工具,展示了表现出性能提升。重现我们结果的模型和说明可以在https://github.com/makinyilmaz/lhbdc/中找到
translated by 谷歌翻译
Video restoration tasks, including super-resolution, deblurring, etc, are drawing increasing attention in the computer vision community. A challenging benchmark named REDS is released in the NTIRE19 Challenge. This new benchmark challenges existing methods from two aspects:(1) how to align multiple frames given large motions, and (2) how to effectively fuse different frames with diverse motion and blur. In this work, we propose a novel Video Restoration framework with Enhanced Deformable convolutions, termed EDVR, to address these challenges. First, to handle large motions, we devise a Pyramid, Cascading and Deformable (PCD) alignment module, in which frame alignment is done at the feature level using deformable convolutions in a coarse-to-fine manner. Second, we propose a Temporal and Spatial Attention (TSA) fusion module, in which attention is applied both temporally and spatially, so as to emphasize important features for subsequent restoration. Thanks to these modules, our EDVR wins the champions and outperforms the second place by a large margin in all four tracks in the NTIRE19 video restoration and enhancement challenges. EDVR also demonstrates superior performance to state-of-the-art published methods on video super-resolution and deblurring. The code is available at https://github.com/xinntao/EDVR.
translated by 谷歌翻译
在本文中,我们研究了实用的时空视频超分辨率(STVSR)问题,该问题旨在从低型低分辨率的低分辨率模糊视频中生成高富含高分辨率的夏普视频。当使用低填充和低分辨率摄像头记录快速动态事件时,通常会发生这种问题,而被捕获的视频将遭受三个典型问题:i)运动模糊发生是由于曝光时间内的对象/摄像机运动而发生的; ii)当事件时间频率超过时间采样的奈奎斯特极限时,运动异叠是不可避免的; iii)由于空间采样率低,因此丢失了高频细节。这些问题可以通过三个单独的子任务的级联来缓解,包括视频脱张,框架插值和超分辨率,但是,这些问题将无法捕获视频序列之间的空间和时间相关性。为了解决这个问题,我们通过利用基于模型的方法和基于学习的方法来提出一个可解释的STVSR框架。具体而言,我们将STVSR作为联合视频脱张,框架插值和超分辨率问题,并以另一种方式将其作为两个子问题解决。对于第一个子问题,我们得出了可解释的分析解决方案,并将其用作傅立叶数据变换层。然后,我们为第二个子问题提出了一个反复的视频增强层,以进一步恢复高频细节。广泛的实验证明了我们方法在定量指标和视觉质量方面的优势。
translated by 谷歌翻译
远程时间对齐至关重要,但对视频恢复任务有挑战性。最近,一些作品试图将远程对齐分成几个子对齐并逐步处理它们。虽然该操作有助于建模遥控对应关系,但由于传播机制,误差累积是不可避免的。在这项工作中,我们提出了一种新颖的通用迭代对准模块,其采用逐渐改进方案进行子对准,产生更准确的运动补偿。为了进一步提高对准精度和时间一致性,我们开发了一种非参数重新加权方法,其中每个相邻帧的重要性以用于聚合的空间方式自适应地评估。凭借拟议的策略,我们的模型在一系列视频恢复任务中实现了多个基准测试的最先进的性能,包括视频超分辨率,去噪和去束性。我们的项目可用于\ url {https:/github.com/redrock303/revisiting-temporal-alignment-for-video-Restion.git}。
translated by 谷歌翻译
近年来,由于SR数据集的开发和相应的实际SR方法,真实的图像超分辨率(SR)已取得了令人鼓舞的结果。相比之下,真实视频SR领域落后,尤其是对于真实的原始视频。考虑到原始图像SR优于SRGB图像SR,我们构建了一个真实世界的原始视频SR(Real-Rawvsr)数据集,并提出了相应的SR方法。我们利用两个DSLR摄像机和一个梁切口来同时捕获具有2倍,3倍和4倍大型的高分辨率(LR)和高分辨率(HR)原始视频。我们的数据集中有450对视频对,场景从室内到室外各不相同,包括相机和对象运动在内的动作。据我们所知,这是第一个现实世界的RAW VSR数据集。由于原始视频的特征是拜耳模式,因此我们提出了一个两分支网络,该网络既涉及包装的RGGB序列和原始的拜耳模式序列,又涉及两个分支,并且两个分支相互互补。经过提出的共对象,相互作用,融合和重建模块后,我们生成了相应的HR SRGB序列。实验结果表明,所提出的方法优于原始或SRGB输入的基准实体和合成视频SR方法。我们的代码和数据集可在https://github.com/zmzhang1998/real-rawvsr上找到。
translated by 谷歌翻译
学识渊博的视频压缩方法已经对视频编码社区产生了各种兴趣,因为它们已经匹配甚至超过传统视频编解码器的速度差异(RD)性能。但是,许多当前基于学习的方法致力于利用短期时间信息,从而限制其性能。在本文中,我们专注于利用视频内容的独特特征,并进一步探索时间信息以增强压缩性能。具体而言,对于远程时间信息开发,我们提出了时间验证,可以在推理过程中在图片组(GOP)中连续更新。在这种情况下,时间先验包含当前共和党中所有解码图像的宝贵时间信息。至于短期时间信息,我们提出了逐步的指导运动补偿,以实现强大而有效的补偿。详细说明,我们设计了一个层次结构,以实现多尺度的补偿。更重要的是,我们使用光流引导来生成每个尺度特征图之间的像素偏移,每个尺度下的补偿结果将用于指导以下规模的补偿。足够的实验结果表明,与最先进的视频压缩方法相比,我们的方法可以获得更好的RD性能。该代码可公开可用:https://github.com/huairui/lstvc。
translated by 谷歌翻译
大多数现有的神经视频压缩方法采用预测编码框架,该预测编码框架首先生成预测帧,然后用当前帧编码其残差。然而,对于压缩比,预测编码只是子最优解,因为它使用简单的减法操作来消除跨越帧的冗余。在本文中,我们提出了一种深度上下文视频压缩框架,以使从预测编码转换到条件编码。特别是,我们尝试回答以下问题:如何在深度视频压缩框架下定义,使用和学习条件。要点击条件编码的可能性,我们将使用要素域上下文提出为条件。这使我们能够利用高维上下文来对编码器和解码器携带丰富的信息,这有助于重建高频内容以获得更高的视频质量。我们的框架也是可扩展的,其中条件可以灵活设计。实验表明,我们的方法可以显着优于先前的最先进(SOTA)深度视频压缩方法。与使用SifeSlow预设相比,我们可以为1080p标准测试视频达到26.0%的比特率保存。
translated by 谷歌翻译
This paper explores the problem of reconstructing high-resolution light field (LF) images from hybrid lenses, including a high-resolution camera surrounded by multiple low-resolution cameras. The performance of existing methods is still limited, as they produce either blurry results on plain textured areas or distortions around depth discontinuous boundaries. To tackle this challenge, we propose a novel end-to-end learning-based approach, which can comprehensively utilize the specific characteristics of the input from two complementary and parallel perspectives. Specifically, one module regresses a spatially consistent intermediate estimation by learning a deep multidimensional and cross-domain feature representation, while the other module warps another intermediate estimation, which maintains the high-frequency textures, by propagating the information of the high-resolution view. We finally leverage the advantages of the two intermediate estimations adaptively via the learned attention maps, leading to the final high-resolution LF image with satisfactory results on both plain textured areas and depth discontinuous boundaries. Besides, to promote the effectiveness of our method trained with simulated hybrid data on real hybrid data captured by a hybrid LF imaging system, we carefully design the network architecture and the training strategy. Extensive experiments on both real and simulated hybrid data demonstrate the significant superiority of our approach over state-of-the-art ones. To the best of our knowledge, this is the first end-to-end deep learning method for LF reconstruction from a real hybrid input. We believe our framework could potentially decrease the cost of high-resolution LF data acquisition and benefit LF data storage and transmission.
translated by 谷歌翻译