我们呈现DD-NERF,一种用于代表人体几何形状和从任意输入视图的外观的新型推广隐含区域。核心贡献是一种双重扩散机制,利用稀疏的卷积神经网络来构建代表不同水平的人体的两个体积:粗糙的体积利用不清的可变形网格来提供大规模的几何指导,以及详细信息卷从本地图像功能中了解复杂的几何图形。我们还使用变压器网络聚合跨视图的图像特征和原始像素,以计算最终的高保真辐射域。各种数据集的实验表明,所提出的方法优于几何重建和新颖观看综合质量的先前工作。
translated by 谷歌翻译
我们介绍了Doublefield,这是一个新颖的框架,结合了高保真人体重建和渲染的表面场和辐射场的优点。在DoubleField中,表面字段和辐射字段通过共享特征嵌入和表面引导采样策略相关联。此外,将视图到视图变压器被引入熔丝多视图特征,并直接从高分辨率输入学习视图依赖性功能。通过DoubleField和视图到视图变压器的建模功能,我们的方法显着提高了几何形状和外观的重建质量,同时支持直接推理,现场特定的高分辨率FineTuning和快速渲染。 Doublefield的功效通过多个数据集的定量评估和真实世界稀疏多视图系统的定性结果验证,显示了其高质量人体模型重建和光学真实自由观点人类渲染的优异能力。数据和源代码将公开用于研究目的。请参阅我们的项目页面:http://www.liuyebin.com/dbfield/dbfield.html。
translated by 谷歌翻译
我们提出了一种新方法,以从多个人的一组稀疏的多视图图像中学习通用的动画神经人类表示。学到的表示形式可用于合成一组稀疏相机的任意人的新型视图图像,并通过用户的姿势控制进一步对它们进行动画。尽管现有方法可以推广到新人,也可以通过用户控制合成动画,但它们都不能同时实现。我们将这一成就归因于用于共享多人人类模型的3D代理,并将不同姿势的空间的扭曲延伸到共享的规范姿势空间,在该空间中,我们在其中学习神经领域并预测个人和人物 - 姿势依赖性变形以及从输入图像中提取的特征的外观。为了应对身体形状,姿势和衣服变形的较大变化的复杂性,我们以分离的几何形状和外观设计神经人类模型。此外,我们在空间点和3D代理的表面点上都利用图像特征来预测人和姿势依赖性特性。实验表明,我们的方法在这两个任务上的最先进都大大优于最先进的方法。该视频和代码可在https://talegqz.github.io/neural_novel_actor上获得。
translated by 谷歌翻译
最近的神经人类表示可以产生高质量的多视图渲染,但需要使用密集的多视图输入和昂贵的培训。因此,它们在很大程度上仅限于静态模型,因为每个帧都是不可行的。我们展示了人类学 - 一种普遍的神经表示 - 用于高保真自由观察动态人类的合成。类似于IBRNET如何通过避免每场景训练来帮助NERF,Humannerf跨多视图输入采用聚合像素对准特征,以及用于解决动态运动的姿势嵌入的非刚性变形场。原始人物员已经可以在稀疏视频输入的稀疏视频输入上产生合理的渲染。为了进一步提高渲染质量,我们使用外观混合模块增强了我们的解决方案,用于组合神经体积渲染和神经纹理混合的益处。各种多视图动态人类数据集的广泛实验证明了我们在挑战运动中合成照片 - 现实自由观点的方法和非常稀疏的相机视图输入中的普遍性和有效性。
translated by 谷歌翻译
我们向渲染和时间(4D)重建人类的渲染和时间(4D)重建的神经辐射场,通过稀疏的摄像机捕获或甚至来自单眼视频。我们的方法将思想与神经场景表示,新颖的综合合成和隐式统计几何人称的人类表示相结合,耦合使用新颖的损失功能。在先前使用符号距离功能表示的结构化隐式人体模型,而不是使用统一的占用率来学习具有统一占用的光域字段。这使我们能够从稀疏视图中稳健地融合信息,并概括超出在训练中观察到的姿势或视图。此外,我们应用几何限制以共同学习观察到的主题的结构 - 包括身体和衣服 - 并将辐射场正规化为几何合理的解决方案。在多个数据集上的广泛实验证明了我们方法的稳健性和准确性,其概括能力显着超出了一系列的姿势和视图,以及超出所观察到的形状的统计外推。
translated by 谷歌翻译
最近,基于神经辐射场(NERF)的进步,在3D人类渲染方面取得了迅速的进展,包括新的视图合成和姿势动画。但是,大多数现有方法集中在特定于人的培训上,他们的培训通常需要多视频视频。本文涉及一项新的挑战性任务 - 为在培训中看不见的人提供新颖的观点和新颖的姿势,仅使用多视图图像作为输入。对于此任务,我们提出了一种简单而有效的方法,以训练具有多视图像作为条件输入的可推广的NERF。关键成分是结合规范NERF和体积变形方案的专用表示。使用规范空间使我们的方法能够学习人类的共享特性,并轻松地推广到不同的人。音量变形用于将规范空间与输入和目标图像以及查询图像特征连接起来,以进行辐射和密度预测。我们利用拟合在输入图像上的参数3D人类模型来得出变形,与我们的规范NERF结合使用,它在实践中效果很好。具有新的观点合成和构成动画任务的真实和合成数据的实验共同证明了我们方法的功效。
translated by 谷歌翻译
本文解决了从多视频视频中重建动画人类模型的挑战。最近的一些作品提出,将一个非刚性变形的场景分解为规范的神经辐射场和一组变形场,它们映射观察空间指向规范空间,从而使它们能够从图像中学习动态场景。但是,它们代表变形场作为转换矢量场或SE(3)字段,这使得优化高度不受限制。此外,这些表示无法通过输入动议明确控制。取而代之的是,我们基于线性混合剥皮算法引入了一个姿势驱动的变形场,该算法结合了混合重量场和3D人类骨架,以产生观察到的对应对应。由于3D人类骨骼更容易观察到,因此它们可以正规化变形场的学习。此外,可以通过输入骨骼运动来控制姿势驱动的变形场,以生成新的变形字段来动画规范人类模型。实验表明,我们的方法显着优于最近的人类建模方法。该代码可在https://zju3dv.github.io/animatable_nerf/上获得。
translated by 谷歌翻译
We present a method that synthesizes novel views of complex scenes by interpolating a sparse set of nearby views. The core of our method is a network architecture that includes a multilayer perceptron and a ray transformer that estimates radiance and volume density at continuous 5D locations (3D spatial locations and 2D viewing directions), drawing appearance information on the fly from multiple source views. By drawing on source views at render time, our method hearkens back to classic work on image-based rendering (IBR), and allows us to render high-resolution imagery. Unlike neural scene representation work that optimizes per-scene functions for rendering, we learn a generic view interpolation function that generalizes to novel scenes. We render images using classic volume rendering, which is fully differentiable and allows us to train using only multiview posed images as supervision. Experiments show that our method outperforms recent novel view synthesis methods that also seek to generalize to novel scenes. Further, if fine-tuned on each scene, our method is competitive with state-of-the-art single-scene neural rendering methods. 1
translated by 谷歌翻译
我们介绍了Sparseneus,这是一种基于神经渲染的新方法,用于从多视图图像中进行表面重建的任务。当仅提供稀疏图像作为输入时,此任务变得更加困难,这种情况通常会产生不完整或失真的结果。此外,他们无法概括看不见的新场景会阻碍他们在实践中的应用。相反,Sparseneus可以概括为新场景,并与稀疏的图像(仅2或3)良好合作。 Sparseneus采用签名的距离函数(SDF)作为表面表示,并通过引入代码编码通用表面预测的几何形状来从图像特征中学习可概括的先验。此外,引入了几种策略,以有效利用稀疏视图来进行高质量重建,包括1)多层几何推理框架以粗略的方式恢复表面; 2)多尺度的颜色混合方案,以实现更可靠的颜色预测; 3)一种一致性意识的微调方案,以控制由遮挡和噪声引起的不一致区域。广泛的实验表明,我们的方法不仅胜过最先进的方法,而且表现出良好的效率,可推广性和灵活性。
translated by 谷歌翻译
With the success of neural volume rendering in novel view synthesis, neural implicit reconstruction with volume rendering has become popular. However, most methods optimize per-scene functions and are unable to generalize to novel scenes. We introduce VolRecon, a generalizable implicit reconstruction method with Signed Ray Distance Function (SRDF). To reconstruct with fine details and little noise, we combine projection features, aggregated from multi-view features with a view transformer, and volume features interpolated from a coarse global feature volume. A ray transformer computes SRDF values of all the samples along a ray to estimate the surface location, which are used for volume rendering of color and depth. Extensive experiments on DTU and ETH3D demonstrate the effectiveness and generalization ability of our method. On DTU, our method outperforms SparseNeuS by about 30% in sparse view reconstruction and achieves comparable quality as MVSNet in full view reconstruction. Besides, our method shows good generalization ability on the large-scale ETH3D benchmark. Project page: https://fangjinhuawang.github.io/VolRecon.
translated by 谷歌翻译
神经表面重建旨在基于多视图图像重建准确的3D表面。基于神经量的先前方法主要训练完全隐式的模型,它们需要单个场景的数小时培训。最近的努力探讨了明确的体积表示,该表示通过记住可学习的素网格中的重要信息,从而大大加快了优化过程。但是,这些基于体素的方法通常在重建细粒几何形状方面遇到困难。通过实证研究,我们发现高质量的表面重建取决于两个关键因素:构建相干形状的能力和颜色几何依赖性的精确建模。特别是,后者是准确重建细节的关键。受这些发现的启发,我们开发了Voxurf,这是一种基于体素的方法,用于有效,准确的神经表面重建,该方法由两个阶段组成:1)利用可学习的特征网格来构建颜色场并获得连贯的粗糙形状,并且2)使用双色网络来完善详细的几何形状,可捕获精确的颜色几何依赖性。我们进一步引入了层次几何特征,以启用跨体素的信息共享。我们的实验表明,Voxurf同时达到了高效率和高质量。在DTU基准测试中,与最先进的方法相比,Voxurf获得了更高的重建质量,训练的加速度为20倍。
translated by 谷歌翻译
我们提出了神经演员(NA),一种用于从任意观点和任意可控姿势的高质量合成人类的新方法。我们的方法是基于最近的神经场景表示和渲染工作,从而从仅从2D图像中学习几何形状和外观的表示。虽然现有的作品令人兴奋地呈现静态场景和动态场景的播放,具有神经隐含方法的照片 - 现实重建和人类的渲染,特别是在用户控制的新颖姿势下,仍然很困难。为了解决这个问题,我们利用一个粗体模型作为将周围的3D空间的代理放入一个规范姿势。神经辐射场从多视图视频输入中了解在规范空间中的姿势依赖几何变形和姿势和视图相关的外观效果。为了综合高保真动态几何和外观的新颖视图,我们利用身体模型上定义的2D纹理地图作为预测残余变形和动态外观的潜变量。实验表明,我们的方法能够比播放的最先进,以及新的姿势合成来实现更好的质量,并且甚至可以概括到新的姿势与训练姿势不同的姿势。此外,我们的方法还支持对合成结果的体形控制。
translated by 谷歌翻译
Photo-realistic free-viewpoint rendering of real-world scenes using classical computer graphics techniques is challenging, because it requires the difficult step of capturing detailed appearance and geometry models. Recent studies have demonstrated promising results by learning scene representations that implicitly encode both geometry and appearance without 3D supervision. However, existing approaches in practice often show blurry renderings caused by the limited network capacity or the difficulty in finding accurate intersections of camera rays with the scene geometry. Synthesizing high-resolution imagery from these representations often requires time-consuming optical ray marching. In this work, we introduce Neural Sparse Voxel Fields (NSVF), a new neural scene representation for fast and high-quality free-viewpoint rendering. NSVF defines a set of voxel-bounded implicit fields organized in a sparse voxel octree to model local properties in each cell. We progressively learn the underlying voxel structures with a diffentiable ray-marching operation from only a set of posed RGB images. With the sparse voxel octree structure, rendering novel views can be accelerated by skipping the voxels containing no relevant scene content. Our method is typically over 10 times faster than the state-of-the-art (namely, NeRF (Mildenhall et al., 2020)) at inference time while achieving higher quality results. Furthermore, by utilizing an explicit sparse voxel representation, our method can easily be applied to scene editing and scene composition. We also demonstrate several challenging tasks, including multi-scene learning, free-viewpoint rendering of a moving human, and large-scale scene rendering. Code and data are available at our website: https://github.com/facebookresearch/NSVF.
translated by 谷歌翻译
最近,我们看到了照片真实的人类建模和渲染的神经进展取得的巨大进展。但是,将它们集成到现有的下游应用程序中的现有网络管道中仍然具有挑战性。在本文中,我们提出了一种全面的神经方法,用于从密集的多视频视频中对人类表演进行高质量重建,压缩和渲染。我们的核心直觉是用一系列高效的神经技术桥接传统的动画网格工作流程。我们首先引入一个神经表面重建器,以在几分钟内进行高质量的表面产生。它与多分辨率哈希编码的截短签名距离场(TSDF)的隐式体积渲染相结合。我们进一步提出了一个混合神经跟踪器来生成动画网格,该网格将明确的非刚性跟踪与自我监督框架中的隐式动态变形结合在一起。前者将粗糙的翘曲返回到规范空间中,而后者隐含的一个隐含物进一步预测了使用4D哈希编码的位移,如我们的重建器中。然后,我们使用获得的动画网格讨论渲染方案,从动态纹理到各种带宽设置下的Lumigraph渲染。为了在质量和带宽之间取得复杂的平衡,我们通过首先渲染6个虚拟视图来涵盖表演者,然后进行闭塞感知的神经纹理融合,提出一个分层解决方案。我们证明了我们方法在各种平台上的各种基于网格的应用程序和照片真实的自由观看体验中的功效,即,通过移动AR插入虚拟人类的表演,或通过移动AR插入真实环境,或带有VR头戴式的人才表演。
translated by 谷歌翻译
基于图像的体积人类使用像素对齐的特征有望泛化,从而看不见姿势和身份。先前的工作利用全局空间编码和多视图几何一致性来减少空间歧义。但是,全球编码通常会过度适应培训数据的分布,并且很难从稀疏视图中学习多视图一致的重建。在这项工作中,我们研究了现有空间编码的常见问题,并提出了一种简单而高效的方法,可以从稀疏视图中对高保真体积的人类进行建模。关键思想之一是通过稀疏3D关键点编码相对空间3D信息。这种方法对观点和跨数据库域间隙的稀疏性很强。我们的方法的表现优于头部重建的最先进方法。关于人体的重建是看不见的受试者,我们还实现了与使用参数人体模型和时间特征聚集的先前工作相当的性能。 Our experiments show that a majority of errors in prior work stem from an inappropriate choice of spatial encoding and thus we suggest a new direction for high-fidelity image-based human modeling. https://markomih.github.io/keypointnerf
translated by 谷歌翻译
在本文中,我们为复杂场景进行了高效且强大的深度学习解决方案。在我们的方法中,3D场景表示为光场,即,一组光线,每组在到达图像平面时具有相应的颜色。对于高效的新颖视图渲染,我们采用了光场的双面参数化,其中每个光线的特征在于4D参数。然后,我们将光场配向作为4D函数,即将4D坐标映射到相应的颜色值。我们训练一个深度完全连接的网络以优化这种隐式功能并记住3D场景。然后,特定于场景的模型用于综合新颖视图。与以前需要密集的视野的方法不同,需要密集的视野采样来可靠地呈现新颖的视图,我们的方法可以通过采样光线来呈现新颖的视图并直接从网络查询每种光线的颜色,从而使高质量的灯场呈现稀疏集合训练图像。网络可以可选地预测每光深度,从而使诸如自动重新焦点的应用。我们的小说视图合成结果与最先进的综合结果相当,甚至在一些具有折射和反射的具有挑战性的场景中优越。我们在保持交互式帧速率和小的内存占地面积的同时实现这一点。
translated by 谷歌翻译
Neural Radiance Field (NeRF) has revolutionized free viewpoint rendering tasks and achieved impressive results. However, the efficiency and accuracy problems hinder its wide applications. To address these issues, we propose Geometry-Aware Generalized Neural Radiance Field (GARF) with a geometry-aware dynamic sampling (GADS) strategy to perform real-time novel view rendering and unsupervised depth estimation on unseen scenes without per-scene optimization. Distinct from most existing generalized NeRFs, our framework infers the unseen scenes on both pixel-scale and geometry-scale with only a few input images. More specifically, our method learns common attributes of novel-view synthesis by an encoder-decoder structure and a point-level learnable multi-view feature fusion module which helps avoid occlusion. To preserve scene characteristics in the generalized model, we introduce an unsupervised depth estimation module to derive the coarse geometry, narrow down the ray sampling interval to proximity space of the estimated surface and sample in expectation maximum position, constituting Geometry-Aware Dynamic Sampling strategy (GADS). Moreover, we introduce a Multi-level Semantic Consistency loss (MSC) to assist more informative representation learning. Extensive experiments on indoor and outdoor datasets show that comparing with state-of-the-art generalized NeRF methods, GARF reduces samples by more than 25\%, while improving rendering quality and 3D geometry estimation.
translated by 谷歌翻译
在规范空间中对人体进行建模是捕捉和动画的常见实践。但是,当涉及神经辐射场(NERF)时,在规范空间中学习静态NERF是不够的,因为即使人体移动时,即使场景照明是恒定的,身体的照明也会变化。以前的方法通过学习人均嵌入来减轻照明的不一致,但是此操作并不能推广到看不见的姿势。鉴于照明条件在世界空间中是静态的,而人体在规范空间中是一致的,我们提出了一个双空间的nerf,该nerf在场景照明和人体中对两个单独空间的两个MLP进行建模。为了弥合这两个空间,以前的方法主要依赖于线性混合剥皮(LBS)算法。但是,动态神经场的LB的混合重量很难棘手,因此通常用另一个MLP记住,这不会推广到新型姿势。尽管可以借用参数网格(例如SMPL)的混合权重,但插值操作会引入更多的伪像。在本文中,我们建议使用Barycentric映射,该映射可以直接概括为看不见的姿势并出奇地取得了比具有神经混合重量的LB的优势。人类36M和ZJU-MOCAP数据集的定量和定性结果显示了我们方法的有效性。
translated by 谷歌翻译
我们提出了HRF-NET,这是一种基于整体辐射场的新型视图合成方法,该方法使用一组稀疏输入来呈现新视图。最近的概括视图合成方法还利用了光辉场,但渲染速度不是实时的。现有的方法可以有效地训练和呈现新颖的观点,但它们无法概括地看不到场景。我们的方法解决了用于概括视图合成的实时渲染问题,并由两个主要阶段组成:整体辐射场预测指标和基于卷积的神经渲染器。该架构不仅基于隐式神经场的一致场景几何形状,而且还可以使用单个GPU有效地呈现新视图。我们首先在DTU数据集的多个3D场景上训练HRF-NET,并且网络只能仅使用光度损耗就看不见的真实和合成数据产生合理的新视图。此外,我们的方法可以利用单个场景的密集参考图像集来产生准确的新颖视图,而无需依赖其他明确表示,并且仍然保持了预训练模型的高速渲染。实验结果表明,HRF-NET优于各种合成和真实数据集的最先进的神经渲染方法。
translated by 谷歌翻译