Inferring knowledge from clinical trials using knowledge graph embedding is an emerging area. However, customizing graph embeddings for different use cases remains a significant challenge. We propose custom2vec, an algorithmic framework to customize graph embeddings by incorporating user preferences in training the embeddings. It captures user preferences by adding custom nodes and links derived from manually vetted results of a separate information retrieval method. We propose a joint learning objective to preserve the original network structure while incorporating the user's custom annotations. We hypothesize that the custom training improves user-expected predictions, for example, in link prediction tasks. We demonstrate the effectiveness of custom2vec for clinical trials related to non-small cell lung cancer (NSCLC) with two customization scenarios: recommending immuno-oncology trials evaluating PD-1 inhibitors and exploring similar trials that compare new therapies with a standard of care. The results show that custom2vec training achieves better performance than the conventional training methods. Our approach is a novel way to customize knowledge graph embeddings and enable more accurate recommendations and predictions.
translated by 谷歌翻译
图形嵌入,代表数值向量的本地和全局邻域信息,是广泛的现实系统数学建模的关键部分。在嵌入算法中,事实证明,基于步行的随机算法非常成功。这些算法通过创建许多随机步行,并重新定义步骤来收集信息。创建随机步行是嵌入过程中最苛刻的部分。计算需求随着网络的规模而增加。此外,对于现实世界网络,考虑到相同基础上的所有节点,低度节点的丰度都会造成不平衡的数据问题。在这项工作中,提出了一种计算较少且节点连接性统一抽样方法。在提出的方法中,随机步行的数量与节点的程度成比例地创建。当将算法应用于大图时,所提出的算法的优点将变得更加增强。提出了使用两个网络(即Cora和Citeseer)进行比较研究。与固定数量的步行情况相比,提出的方法需要减少50%的计算工作,以达到节点分类和链接预测计算的相同精度。
translated by 谷歌翻译
成功的药物开发的主要障碍是临床试验的复杂性,成本和规模。临床试验数据的详细内部结构可以使常规优化难以实现。最近的机器学习进步,具体说明性结构的数据分析,有可能在改善临床试验设计方面取得重大进展。 TrimeGraph旨在应用这些方法,为开发模型的概念证明框架,可以帮助药物开发和益处患者。在这项工作中,我们首先介绍从CT.Gov,AACT和FISTTROVE数据库编译的策划临床试验数据集(n = 1191试验;代表一百万名患者)并将该数据转换为图形结构格式。然后,我们详细介绍了一系列图形机学习算法的数学依据和实现,其通常在嵌入在低维特征空间中的图形数据上使用标准机器分类器。我们培训了这些模型,以预测临床试验的副作用信息给出关于疾病,现有的医疗病症和治疗的信息。 Metapath2Vec算法表现良好,具有标准的逻辑回归,决策树,随机森林,支持向量和神经网络分类器,以及分别显示0.85,0.68,0.86,0.80和0.77的典型Roc-Auc谱分别。值得注意的是,当在等效的阵列结构数据上训练时,最好的执行分类器只能产生0.70的典型的Roc-Auc得分。我们的工作表明,图形建模可以显着提高适当的数据集上的预测准确性。改进建模假设和更多数据类型的项目的连续版本可以产生具有现实世界的药物开发应用的优秀预测因子。
translated by 谷歌翻译
Graph is an important data representation which appears in a wide diversity of real-world scenarios. Effective graph analytics provides users a deeper understanding of what is behind the data, and thus can benefit a lot of useful applications such as node classification, node recommendation, link prediction, etc. However, most graph analytics methods suffer the high computation and space cost. Graph embedding is an effective yet efficient way to solve the graph analytics problem. It converts the graph data into a low dimensional space in which the graph structural information and graph properties are maximumly preserved. In this survey, we conduct a comprehensive review of the literature in graph embedding. We first introduce the formal definition of graph embedding as well as the related concepts. After that, we propose two taxonomies of graph embedding which correspond to what challenges exist in different graph embedding problem settings and how the existing work address these challenges in their solutions. Finally, we summarize the applications that graph embedding enables and suggest four promising future research directions in terms of computation efficiency, problem settings, techniques and application scenarios.
translated by 谷歌翻译
Link prediction is a key problem for network-structured data. Link prediction heuristics use some score functions, such as common neighbors and Katz index, to measure the likelihood of links. They have obtained wide practical uses due to their simplicity, interpretability, and for some of them, scalability. However, every heuristic has a strong assumption on when two nodes are likely to link, which limits their effectiveness on networks where these assumptions fail. In this regard, a more reasonable way should be learning a suitable heuristic from a given network instead of using predefined ones. By extracting a local subgraph around each target link, we aim to learn a function mapping the subgraph patterns to link existence, thus automatically learning a "heuristic" that suits the current network. In this paper, we study this heuristic learning paradigm for link prediction. First, we develop a novel γ-decaying heuristic theory. The theory unifies a wide range of heuristics in a single framework, and proves that all these heuristics can be well approximated from local subgraphs. Our results show that local subgraphs reserve rich information related to link existence. Second, based on the γ-decaying theory, we propose a new method to learn heuristics from local subgraphs using a graph neural network (GNN). Its experimental results show unprecedented performance, working consistently well on a wide range of problems.
translated by 谷歌翻译
链接预测旨在推断网络/图中的一对节点对之间的链接存在。尽管应用了广泛的应用,但传统链接预测算法的成功受到了三个主要挑战(链接稀疏,节点属性噪声和动态变化)的影响,这些挑战受到许多现实世界网络所面临的。为了应对这些挑战,我们提出了一个上下文化的自我监督学习(CSSL)框架,该框架充分利用了链接预测的结构上下文预测。提出的CSSL框架学习了一个链接编码器,以从配对的节点嵌入中推断链接存在概率,这些嵌入是通过节点属性上的转换构建的。为了生成链接预测的信息节点嵌入,结构上下文预测被用作自我监督的学习任务,以提高链接预测性能。研究了两种类型的结构上下文,即从随机步行和上下文子图收集的上下文节点。 CSSL框架可以以端到端的方式进行训练,并通过通过链接预测和自我监督的学习任务来监督模型参数的学习。提出的CSSL是一个通用且灵活的框架,因为它可以同时处理属性和非属性网络,并且在跨性和归纳性链接预测设置下进行操作。对七个现实世界基准网络进行的广泛实验和消融研究表明,在转化和归纳性环境下,在不同类型的网络上,提出的基于自学的链接链路预测算法优于最先进的基线。拟议的CSSL还可以从大规模网络上的节点属性噪声和可扩展性方面产生竞争性能。
translated by 谷歌翻译
越来越多的语义资源提供了人类知识的宝贵储存;但是,错误条目的概率随着尺寸的增加而增加。因此,识别给定知识库的潜在虚假部分的方法正在成为越来越重要的感兴趣领域。在这项工作中,我们展示了对仅结构的链接分析方法的系统评估是否可以提供可扩展手段,以检测可能的异常,以及潜在的有趣的新颖关系候选者。在八种不同的语义资源中评估十三方法,包括基因本体,食品本体,海洋本体论和类似,我们证明了仅限结构的链接分析可以为数据集的子集提供可扩展的异常检测。此外,我们证明,通过考虑符号节点嵌入,可以获得预测(链接)的说明,使得该方法的该分支可能比黑盒更有价值。据我们所知,这是目前,来自不同域的语义资源的不同类型链路分析方法的适用性最广泛的系统研究之一。
translated by 谷歌翻译
Traditional network embedding primarily focuses on learning a continuous vector representation for each node, preserving network structure and/or node content information, such that off-the-shelf machine learning algorithms can be easily applied to the vector-format node representations for network analysis. However, the learned continuous vector representations are inefficient for large-scale similarity search, which often involves finding nearest neighbors measured by distance or similarity in a continuous vector space. In this paper, we propose a search efficient binary network embedding algorithm called BinaryNE to learn a binary code for each node, by simultaneously modeling node context relations and node attribute relations through a three-layer neural network. BinaryNE learns binary node representations through a stochastic gradient descent based online learning algorithm. The learned binary encoding not only reduces memory usage to represent each node, but also allows fast bit-wise comparisons to support faster node similarity search than using Euclidean distance or other distance measures. Extensive experiments and comparisons demonstrate that BinaryNE not only delivers more than 25 times faster search speed, but also provides comparable or better search quality than traditional continuous vector based network embedding methods. The binary codes learned by BinaryNE also render competitive performance on node classification and node clustering tasks. The source code of this paper is available at https://github.com/daokunzhang/BinaryNE.
translated by 谷歌翻译
该药物发现​​和开发过程是一个漫长而昂贵的过程,每次药物平均耗资超过10亿美元,需要10 - 15年的时间。为了减少在整个过程中的高水平流失量,在最近十年中,越来越多地将机器学习方法应用于药物发现和发育的各个阶段,尤其是在最早鉴定可药物疾病基因的阶段。在本文中,我们开发了一种新的张量分解模型,以预测用于治疗疾病的潜在药物靶标(基因或蛋白质)。我们创建了一个三维数据张量,该数据张量由1,048个基因靶标,860个疾病和230,0111111111111111111111111111111的证据属性和临床结果,并使用从开放式目标和药物数据库中提取的数据组成。我们用从药物发现的知识图中学到的基因目标表示丰富了数据,并应用了我们提出的方法来预测看不见的基因靶标和疾病对的临床结果。我们设计了三种评估策略来衡量预测性能,并将几个常用的机器学习分类器与贝叶斯矩阵和张量分解方法进行了基准测试。结果表明,合并知识图嵌入可显着提高预测准确性,并与密集的神经网络一起训练张量分解优于所有其他基线。总而言之,我们的框架结合了两种积极研究的机器学习方法,用于疾病目标识别,即张量分解和知识图表示学习,这可能是在数据驱动的药物发现中进一步探索的有希望的途径。
translated by 谷歌翻译
Machine learning on graphs is an important and ubiquitous task with applications ranging from drug design to friendship recommendation in social networks. The primary challenge in this domain is finding a way to represent, or encode, graph structure so that it can be easily exploited by machine learning models. Traditionally, machine learning approaches relied on user-defined heuristics to extract features encoding structural information about a graph (e.g., degree statistics or kernel functions). However, recent years have seen a surge in approaches that automatically learn to encode graph structure into low-dimensional embeddings, using techniques based on deep learning and nonlinear dimensionality reduction. Here we provide a conceptual review of key advancements in this area of representation learning on graphs, including matrix factorization-based methods, random-walk based algorithms, and graph neural networks. We review methods to embed individual nodes as well as approaches to embed entire (sub)graphs. In doing so, we develop a unified framework to describe these recent approaches, and we highlight a number of important applications and directions for future work.
translated by 谷歌翻译
神经网络的最新进步已经解决了常见的图表问题,例如链路预测,节点分类,节点聚类,通过将实体和关系的嵌入和关系开发到向量空间中来看。绘图嵌入式对图中存在的结构信息进行编码。然后,编码嵌入式可用于预测图中的缺失链接。然而,获得图表的最佳嵌入可以是嵌入式系统中的计算具有挑战性的任务。我们在这项工作中专注的两种技术是1)节点嵌入来自随机步行的方法和2)知识图形嵌入。随机播放的嵌入物是计算地廉价的,但是是次优的,而知识图形嵌入物表现更好,但是计算得昂贵。在这项工作中,我们研究了转换从基于随机步行方法获得的节点嵌入的转换模型,以直接从知识图方法获得的嵌入,而不会增加计算成本。广泛的实验表明,所提出的变换模型可用于实时解决链路预测。
translated by 谷歌翻译
Graph neural networks (GNNs) have received remarkable success in link prediction (GNNLP) tasks. Existing efforts first predefine the subgraph for the whole dataset and then apply GNNs to encode edge representations by leveraging the neighborhood structure induced by the fixed subgraph. The prominence of GNNLP methods significantly relies on the adhoc subgraph. Since node connectivity in real-world graphs is complex, one shared subgraph is limited for all edges. Thus, the choices of subgraphs should be personalized to different edges. However, performing personalized subgraph selection is nontrivial since the potential selection space grows exponentially to the scale of edges. Besides, the inference edges are not available during training in link prediction scenarios, so the selection process needs to be inductive. To bridge the gap, we introduce a Personalized Subgraph Selector (PS2) as a plug-and-play framework to automatically, personally, and inductively identify optimal subgraphs for different edges when performing GNNLP. PS2 is instantiated as a bi-level optimization problem that can be efficiently solved differently. Coupling GNNLP models with PS2, we suggest a brand-new angle towards GNNLP training: by first identifying the optimal subgraphs for edges; and then focusing on training the inference model by using the sampled subgraphs. Comprehensive experiments endorse the effectiveness of our proposed method across various GNNLP backbones (GCN, GraphSage, NGCF, LightGCN, and SEAL) and diverse benchmarks (Planetoid, OGB, and Recommendation datasets). Our code is publicly available at \url{https://github.com/qiaoyu-tan/PS2}
translated by 谷歌翻译
知识图表通常掺入到推荐系统,以提高整体性能。由于知识图的推广和规模,大多数知识的关系是不是目标用户项预测有帮助。要利用知识图在推荐系统捕捉目标具体知识的关系,我们需要提炼知识图,以保留有用的信息和完善的知识来捕捉用户的喜好。为了解决这个问题,我们提出了知识感知条件注意网络(KCAN),这是一个终端到终端的模式纳入知识图形转换为推荐系统。具体来说,我们使用一个知识感知注意传播方式,以获得所述节点表示第一,其捕获用户 - 项目网络和知识图表对全球语义相似度。然后给出一个目标,即用户 - 项对,我们会自动提炼出知识图到基于知识感知关注的具体目标子。随后,通过在应用子有条件的注意力聚集,我们细化知识图,以获得特定目标节点表示。因此,我们可以得到两个表示性和个性化,以实现整体性能。现实世界的数据集实验结果表明,我们对国家的最先进的算法框架的有效性。
translated by 谷歌翻译
能够推荐在线社交网络中用户之间的链接对于用户与志趣相投的个人以及利用社交媒体信息发展业务的平台本身和第三方联系很重要。预测通常基于无监督或监督的学习,通常利用简单而有效的图形拓扑信息,例如普通邻居的数量。但是,我们认为有关个人个人社会结构的更丰富信息可能会带来更好的预测。在本文中,我们建议利用良好的社会认知理论来提高链接预测绩效。根据这些理论,个人平均将自己的社会关系安排在五个同心圆下,以减少亲密关系。我们假设不同圈子中的关系在预测新链接方面具有不同的重要性。为了验证这一主张,我们专注于流行的功能萃取预测算法(既无监督和监督),并将其扩展到包括社交圈的意识。我们验证了这些圆圈感知算法对几个基准测试的预测性能(包括其基线版本以及基于节点的链接和GNN链接预测),利用了两个Twitter数据集,其中包括一个视频游戏玩家和通用用户的社区。我们表明,社会意识通常可以在预测绩效方面有重大改进,击败了Node2Vec和Seal等最新解决方案,而不会增加计算复杂性。最后,我们表明可以使用社交意识来代替针对特定类别用户的分类器(可能是昂贵或不切实际)的。
translated by 谷歌翻译
在本文中,我们旨在提供有效的成对学习神经链路预测(PLNLP)框架。该框架将链路预测视为对等级问题的成对学习,包括四个主要组件,即邻域编码器,链路预测器,负采样器和目标函数组成。该框架灵活地,任何通用图形神经卷积或链路预测特定神经结构都可以作为邻域编码器。对于链路预测器,我们设计不同的评分功能,可以基于不同类型的图表来选择。在否定采样器中,我们提供了几种采样策略,这些策略是特定的问题。至于目标函数,我们建议使用有效的排名损失,这大约最大化标准排名度量AUC。我们在4个链路属性预测数据集上评估了开放图基准的4个链接属性预测数据集,包括\ texttt {ogbl-ddi},\ texttt {ogbl-collbab},\ texttt {ogbl-ppa}和\ texttt {ogbl-ciation2}。 PLNLP在\ TextTt {ogbl-ddi}上实现前1个性能,以及仅使用基本神经架构的\ texttt {ogbl-collab}和\ texttt {ogbl-ciation2}的前2个性能。该性能展示了PLNLP的有效性。
translated by 谷歌翻译
改善疾病的护理标准是关于更好的治疗方法,反过来依赖于寻找和开发新药。然而,药物发现是一个复杂且昂贵的过程。通过机器学习的方法采用了利用域固有的互连性质的药物发现知识图的创建。基于图形的数据建模,结合知识图形嵌入式提供了更直观的域表示,适用于推理任务,例如预测缺失链路。一个这样的例子将产生对给定疾病的可能相关基因的排名列表,通常被称为目标发现。因此,这是关键的,即这些预测不仅是相关的,而且是生物学上的有意义的。然而,知识图形可以直接偏向,由于集成的底层数据源,或者由于图形构造中的建模选择,其中的一个结果是某些实体可以在拓扑上超越。我们展示了知识图形嵌入模型可能受到这种结构不平衡的影响,导致无论上下文都要高度排名的密集连接实体。我们在不同的数据集,模型和预测任务中提供对此观察的支持。此外,我们展示了如何通过随机,生物学上无意义的信息扰乱图形拓扑结构以人为地改变基因的等级。这表明这种模型可能会受到实体频率而不是在关系中编码的生物学信息的影响,当实体频率不是基础数据的真实反射时,创建问题。我们的结果突出了数据建模选择的重要性,并强调了从业者在解释模型输出和知识图形组合期间时要注意这些问题。
translated by 谷歌翻译
Recent advancements in deep neural networks for graph-structured data have led to state-of-the-art performance on recommender system benchmarks. However, making these methods practical and scalable to web-scale recommendation tasks with billions of items and hundreds of millions of users remains a challenge.Here we describe a large-scale deep recommendation engine that we developed and deployed at Pinterest. We develop a dataefficient Graph Convolutional Network (GCN) algorithm PinSage, which combines efficient random walks and graph convolutions to generate embeddings of nodes (i.e., items) that incorporate both graph structure as well as node feature information. Compared to prior GCN approaches, we develop a novel method based on highly efficient random walks to structure the convolutions and design a novel training strategy that relies on harder-and-harder training examples to improve robustness and convergence of the model.We deploy PinSage at Pinterest and train it on 7.5 billion examples on a graph with 3 billion nodes representing pins and boards, and 18 billion edges. According to offline metrics, user studies and A/B tests, PinSage generates higher-quality recommendations than comparable deep learning and graph-based alternatives. To our knowledge, this is the largest application of deep graph embeddings to date and paves the way for a new generation of web-scale recommender systems based on graph convolutional architectures.
translated by 谷歌翻译
图表可以表示实体之间的关系信息,图形结构广泛用于许多智能任务,例如搜索,推荐和问题应答。然而,实际上大多数图形结构数据都遭受了不完整性,因此链路预测成为一个重要的研究问题。虽然提出了许多模型来用于链路预测,但以下两个问题仍然仍然较少:(1)大多数方法在不利用相关链路中使用丰富的信息,大多数方法都独立模型,并且(2)现有型号主要基于关联设计学习并没有考虑推理。通过这些问题,在本文中,我们提出了图表协作推理(GCR),它可以使用邻居与逻辑推理视角的关系中的关系推理。我们提供了一种简单的方法来将图形结构转换为逻辑表达式,以便链路预测任务可以转换为神经逻辑推理问题。我们应用逻辑受限的神经模块根据逻辑表达式构建网络架构,并使用反向传播以有效地学习模型参数,这在统一架构中桥接可分辨率的学习和象征性推理。为了展示我们工作的有效性,我们对图形相关任务进行实验,例如基于常用的基准数据集的链路预测和推荐,我们的图表合作推理方法实现了最先进的性能。
translated by 谷歌翻译
生物医学网络是与疾病网络的蛋白质相互作用的普遍描述符,从蛋白质相互作用,一直到医疗保健系统和科学知识。随着代表学习提供强大的预测和洞察的显着成功,我们目睹了表现形式学习技术的快速扩展,进入了这些网络的建模,分析和学习。在这篇综述中,我们提出了一个观察到生物学和医学中的网络长期原则 - 而在机器学习研究中经常出口 - 可以为代表学习提供概念基础,解释其当前的成功和限制,并告知未来进步。我们综合了一系列算法方法,即在其核心利用图形拓扑到将网络嵌入到紧凑的向量空间中,并捕获表示陈述学习证明有用的方式的广度。深远的影响包括鉴定复杂性状的变异性,单细胞的异心行为及其对健康的影响,协助患者的诊断和治疗以及制定安全有效的药物。
translated by 谷歌翻译
图表表示学习是一种快速增长的领域,其中一个主要目标是在低维空间中产生有意义的图形表示。已经成功地应用了学习的嵌入式来执行各种预测任务,例如链路预测,节点分类,群集和可视化。图表社区的集体努力提供了数百种方法,但在所有评估指标下没有单一方法擅长,例如预测准确性,运行时间,可扩展性等。该调查旨在通过考虑算法来评估嵌入方法的所有主要类别的图表变体,参数选择,可伸缩性,硬件和软件平台,下游ML任务和多样化数据集。我们使用包含手动特征工程,矩阵分解,浅神经网络和深图卷积网络的分类法组织了图形嵌入技术。我们使用广泛使用的基准图表评估了节点分类,链路预测,群集和可视化任务的这些类别算法。我们在Pytorch几何和DGL库上设计了我们的实验,并在不同的多核CPU和GPU平台上运行实验。我们严格地审查了各种性能指标下嵌入方法的性能,并总结了结果。因此,本文可以作为比较指南,以帮助用户选择最适合其任务的方法。
translated by 谷歌翻译