实体图像超分辨率旨在将现实世界的低分辨率图像恢复到其高质量版本中。典型的RealSR框架通常包括针对不同图像属性设计的多个标准的优化,通过隐含的假设,即基地图像可以在不同标准之间提供良好的权衡。但是,由于不同图像属性之间固有的对比关系,因此在实践中很容易违反该假设。对比学习(CL)提供了一种有希望的食谱,可以通过使用三重态对比损失学习判别特征来缓解此问题。尽管CL在许多计算机视觉任务中取得了重大成功,但由于在这种情况下很难定义有效的阳性图像对,因此将CL引入REALSR是不平凡的。受到观察的启发,即标准之间也可能存在对比的关系,在这项工作中,我们提出了一种新颖的室友训练范式,称为标准比较学习(CRIA-CL),通过开发根据标准而不是图像贴片定义的对比损失。此外,提出了一个空间投影仪,以便在Realsr中获得CRIA-CL的良好视图。我们的实验表明,与典型的加权回归策略相比,我们的方法在相似的参数设置下取得了重大改进。
translated by 谷歌翻译
对比学习在各种高级任务中取得了显着的成功,但是为低级任务提出了较少的方法。采用VANILLA对比学习技术采用直接为低级视觉任务提出的VANILLA对比度学习技术,因为所获得的全局视觉表现不足以用于需要丰富的纹理和上下文信息的低级任务。在本文中,我们提出了一种用于单图像超分辨率(SISR)的新型对比学习框架。我们从两个视角调查基于对比的学习的SISR:样品施工和特征嵌入。现有方法提出了一些天真的样本施工方法(例如,考虑到作为负样本的低质量输入以及作为正样品的地面真理),并且它们采用了先前的模型(例如,预先训练的VGG模型)来获得该特征嵌入而不是探索任务友好的。为此,我们向SISR提出了一个实用的对比学习框架,涉及在频率空间中产生许多信息丰富的正负样本。我们不是利用其他预先训练的网络,我们设计了一种从鉴别器网络继承的简单但有效的嵌入网络,并且可以用主SR网络迭代优化,使其成为任务最通报。最后,我们对我们的方法进行了广泛的实验评估,与基准方法相比,在目前的最先进的SISR方法中显示出高达0.21 dB的显着增益。
translated by 谷歌翻译
Deep Convolutional Neural Networks (DCNNs) have exhibited impressive performance on image super-resolution tasks. However, these deep learning-based super-resolution methods perform poorly in real-world super-resolution tasks, where the paired high-resolution and low-resolution images are unavailable and the low-resolution images are degraded by complicated and unknown kernels. To break these limitations, we propose the Unsupervised Bi-directional Cycle Domain Transfer Learning-based Generative Adversarial Network (UBCDTL-GAN), which consists of an Unsupervised Bi-directional Cycle Domain Transfer Network (UBCDTN) and the Semantic Encoder guided Super Resolution Network (SESRN). First, the UBCDTN is able to produce an approximated real-like LR image through transferring the LR image from an artificially degraded domain to the real-world LR image domain. Second, the SESRN has the ability to super-resolve the approximated real-like LR image to a photo-realistic HR image. Extensive experiments on unpaired real-world image benchmark datasets demonstrate that the proposed method achieves superior performance compared to state-of-the-art methods.
translated by 谷歌翻译
Convolutional Neural Network (CNN)-based image super-resolution (SR) has exhibited impressive success on known degraded low-resolution (LR) images. However, this type of approach is hard to hold its performance in practical scenarios when the degradation process is unknown. Despite existing blind SR methods proposed to solve this problem using blur kernel estimation, the perceptual quality and reconstruction accuracy are still unsatisfactory. In this paper, we analyze the degradation of a high-resolution (HR) image from image intrinsic components according to a degradation-based formulation model. We propose a components decomposition and co-optimization network (CDCN) for blind SR. Firstly, CDCN decomposes the input LR image into structure and detail components in feature space. Then, the mutual collaboration block (MCB) is presented to exploit the relationship between both two components. In this way, the detail component can provide informative features to enrich the structural context and the structure component can carry structural context for better detail revealing via a mutual complementary manner. After that, we present a degradation-driven learning strategy to jointly supervise the HR image detail and structure restoration process. Finally, a multi-scale fusion module followed by an upsampling layer is designed to fuse the structure and detail features and perform SR reconstruction. Empowered by such degradation-based components decomposition, collaboration, and mutual optimization, we can bridge the correlation between component learning and degradation modelling for blind SR, thereby producing SR results with more accurate textures. Extensive experiments on both synthetic SR datasets and real-world images show that the proposed method achieves the state-of-the-art performance compared to existing methods.
translated by 谷歌翻译
在本文中,我们考虑了基于参考的超分辨率(REFSR)中的两个具有挑战性的问题,(i)如何选择适当的参考图像,以及(ii)如何以一种自我监督的方式学习真实世界RefSR。特别是,我们从双摄像头Zooms(SelfDZSR)观察到现实世界图像SR的新颖的自我监督学习方法。考虑到多台相机在现代智能手机中的普及,可以自然利用越来越多的缩放(远摄)图像作为指导较小的变焦(短对焦)图像的SR。此外,SelfDZSR学习了一个深层网络,以获得短对焦图像的SR结果,以具有与远摄图像相同的分辨率。为此,我们将远摄图像而不是其他高分辨率图像作为监督信息,然后从中选择中心贴片作为对相应的短对焦图像补丁的引用。为了减轻短对焦低分辨率(LR)图像和远摄地面真相(GT)图像之间未对准的影响,我们设计了辅助LR发电机,并将GT映射到辅助LR,同时保持空间位置不变。 。然后,可以利用辅助-LR通过建议的自适应空间变压器网络(ADASTN)将LR特征变形,并将REF特征与GT匹配。在测试过程中,可以直接部署SelfDZSR,以使用远摄映像的引用来超级解决整个短对焦图像。实验表明,我们的方法可以针对最先进的方法实现更好的定量和定性性能。代码可在https://github.com/cszhilu1998/selfdzsr上找到。
translated by 谷歌翻译
现实世界图像超分辨率(SR)的关键挑战是在低分辨率(LR)图像中恢复具有复杂未知降解(例如,下采样,噪声和压缩)的缺失细节。大多数以前的作品还原图像空间中的此类缺失细节。为了应对自然图像的高度多样性,他们要么依靠难以训练和容易训练和伪影的不稳定的甘体,要么诉诸于通常不可用的高分辨率(HR)图像中的明确参考。在这项工作中,我们提出了匹配SR(FEMASR)的功能,该功能在更紧凑的特征空间中恢复了现实的HR图像。与图像空间方法不同,我们的FEMASR通过将扭曲的LR图像{\ IT特征}与我们预读的HR先验中的无失真性HR对应物匹配来恢复HR图像,并解码匹配的功能以获得现实的HR图像。具体而言,我们的人力资源先验包含一个离散的特征代码簿及其相关的解码器,它们在使用量化的生成对抗网络(VQGAN)的HR图像上预估计。值得注意的是,我们在VQGAN中结合了一种新型的语义正则化,以提高重建图像的质量。对于功能匹配,我们首先提取由LR编码器组成的LR编码器的LR功能,然后遵循简单的最近邻居策略,将其与预读的代码簿匹配。特别是,我们为LR编码器配备了与解码器的残留快捷方式连接,这对于优化功能匹配损耗至关重要,还有助于补充可能的功能匹配错误。实验结果表明,我们的方法比以前的方法产生更现实的HR图像。代码以\ url {https://github.com/chaofengc/femasr}发布。
translated by 谷歌翻译
在本文中,我们发现两个因素抑制POMS从实现高感感性质量:1)方向优化(COO)问题和2)模型的低频趋势。首先,POMS倾向于生成SR图像,其位置空间中的位置最接近所有潜在的高分辨率(HR)图像的分配中心,导致这种POMS失去高频细节。其次,图像的90美元\%$区域由低频信号组成;相比之下,人类感知依赖于图像的高频细节。然而,POMS应用相同的计算来处理不同频率区域,使POM倾向于恢复低频区域。基于这两个因素,我们提出了一种细节,通过组合高频增强模块和空间对比学习模块来降低COO问题的影响和低频趋势来提高对比损失(DECHROSTS)。实验结果表明,在若干常规SR模型上施加DROCKS时的效率和有效性。例如,在EDSR中,与基于GAN的方法相比,我们所提出的方法与视觉质量微妙降级的基于GAN的方法实现了3.60美元。此外,我们的最终结果表明,与最先进的方法相比,配备了我们的DECHROSS的SR网络更具现实和视觉上令人愉悦的纹理。 %拟议方法的源代码包含在补充材料中,并将在将来公开。
translated by 谷歌翻译
盲目图像超分辨率(SR)的典型方法通过直接估算或学习潜在空间中的降解表示来处理未知的降解。这些方法的一个潜在局限性是,他们假设可以通过整合各种手工降解(例如,比科比克下采样)来模拟未知的降解,这不一定是正确的。现实世界中的降解可能超出了手工降解的模拟范围,这被称为新型降解。在这项工作中,我们建议学习一个潜在的降解空间,可以将其从手工制作的(基本)降解中推广到新的降解。然后将其在此潜在空间中获得的新型降解的表示形式被利用,以生成与新型降解一致的降级图像,以构成SR模型的配对训练数据。此外,我们执行各种推断,以使潜在表示空间中的降解后降解与先前的分布(例如高斯分布)相匹配。因此,我们能够采样更多的高质量表示以进行新的降级,以增加SR模型的训练数据。我们对合成数据集和现实数据集进行了广泛的实验,以验证我们在新型降解中盲目超分辨率的有效性和优势。
translated by 谷歌翻译
当前的深层图像超分辨率(SR)方法试图从下采样的图像或假设简单高斯内核和添加噪声中降解来恢复高分辨率图像。但是,这种简单的图像处理技术代表了降低图像分辨率的现实世界过程的粗略近似。在本文中,我们提出了一个更现实的过程,通过引入新的内核对抗学习超分辨率(KASR)框架来处理现实世界图像SR问题,以降低图像分辨率。在提议的框架中,降解内核和噪声是自适应建模的,而不是明确指定的。此外,我们还提出了一个迭代监督过程和高频选择性目标,以进一步提高模型SR重建精度。广泛的实验验证了对现实数据集中提出的框架的有效性。
translated by 谷歌翻译
面部超分辨率(FSR),也称为面部幻觉,其旨在增强低分辨率(LR)面部图像以产生高分辨率(HR)面部图像的分辨率,是特定于域的图像超分辨率问题。最近,FSR获得了相当大的关注,并目睹了深度学习技术的发展炫目。迄今为止,有很少有基于深入学习的FSR的研究摘要。在本次调查中,我们以系统的方式对基于深度学习的FSR方法进行了全面审查。首先,我们总结了FSR的问题制定,并引入了流行的评估度量和损失功能。其次,我们详细说明了FSR中使用的面部特征和流行数据集。第三,我们根据面部特征的利用大致分类了现有方法。在每个类别中,我们从设计原则的一般描述开始,然后概述代表方法,然后讨论其中的利弊。第四,我们评估了一些最先进的方法的表现。第五,联合FSR和其他任务以及与FSR相关的申请大致介绍。最后,我们设想了这一领域进一步的技术进步的前景。在\ URL {https://github.com/junjun-jiang/face-hallucination-benchmark}上有一个策划的文件和资源的策划文件和资源清单
translated by 谷歌翻译
Real-world image super-resolution (RISR) has received increased focus for improving the quality of SR images under unknown complex degradation. Existing methods rely on the heavy SR models to enhance low-resolution (LR) images of different degradation levels, which significantly restricts their practical deployments on resource-limited devices. In this paper, we propose a novel Dynamic Channel Splitting scheme for efficient Real-world Image Super-Resolution, termed DCS-RISR. Specifically, we first introduce the light degradation prediction network to regress the degradation vector to simulate the real-world degradations, upon which the channel splitting vector is generated as the input for an efficient SR model. Then, a learnable octave convolution block is proposed to adaptively decide the channel splitting scale for low- and high-frequency features at each block, reducing computation overhead and memory cost by offering the large scale to low-frequency features and the small scale to the high ones. To further improve the RISR performance, Non-local regularization is employed to supplement the knowledge of patches from LR and HR subspace with free-computation inference. Extensive experiments demonstrate the effectiveness of DCS-RISR on different benchmark datasets. Our DCS-RISR not only achieves the best trade-off between computation/parameter and PSNR/SSIM metric, and also effectively handles real-world images with different degradation levels.
translated by 谷歌翻译
近年来,面部语义指导(包括面部地标,面部热图和面部解析图)和面部生成对抗网络(GAN)近年来已广泛用于盲面修复(BFR)。尽管现有的BFR方法在普通案例中取得了良好的性能,但这些解决方案在面对严重降解和姿势变化的图像时具有有限的弹性(例如,在现实世界情景中看起来右,左看,笑等)。在这项工作中,我们提出了一个精心设计的盲人面部修复网络,具有生成性面部先验。所提出的网络主要由非对称编解码器和stylegan2先验网络组成。在非对称编解码器中,我们采用混合的多路残留块(MMRB)来逐渐提取输入图像的弱纹理特征,从而可以更好地保留原始面部特征并避免过多的幻想。 MMRB也可以在其他网络中插入插件。此外,多亏了StyleGAN2模型的富裕和多样化的面部先验,我们采用了微调的方法来灵活地恢复自然和现实的面部细节。此外,一种新颖的自我监督训练策略是专门设计用于面部修复任务的,以使分配更接近目标并保持训练稳定性。关于合成和现实世界数据集的广泛实验表明,我们的模型在面部恢复和面部超分辨率任务方面取得了卓越的表现。
translated by 谷歌翻译
未配对的图像到图像翻译旨在找到源域和目标域之间的映射。为了减轻缺乏源图像的监督标签的问题,通过假设未配对的图像之间的可逆关系,已经提出了基于周期矛盾的方法来保存图像结构。但是,此假设仅使用图像对之间的有限对应关系。最近,使用基于贴片的正/负学习,对比度学习(CL)已被用来进一步研究未配对图像翻译中的图像对应关系。基于贴片的对比例程通过自相似度计算获得阳性,并将其余的斑块视为负面。这种灵活的学习范式以低成本获得辅助上下文化信息。由于负面的样本人数令人印象深刻,因此我们有好奇心,我们基于一个问题进行了调查:是否需要所有负面的对比度学习?与以前的CL方法不同,在本文中,我们从信息理论的角度研究了负面因素,并通过稀疏和对补丁进行排名来引入一种新的负面修剪技术,以用于未配对的图像到图像翻译(PUT) 。所提出的算法是有效的,灵活的,并使模型能够稳定地学习相应贴片之间的基本信息。通过将质量置于数量上,只需要几个负贴片即可获得更好的结果。最后,我们通过比较实验验证了模型的优势,稳定性和多功能性。
translated by 谷歌翻译
尽管基准数据集的成功,但大多数先进的面部超分辨率模型在真实情况下表现不佳,因为真实图像与合成训练对之间的显着域间隙。为了解决这个问题,我们提出了一种用于野外面部超分辨率的新型域 - 自适应降级网络。该降级网络预测流场以及中间低分辨率图像。然后,通过翘曲中间图像来生成降级的对应物。利用捕获运动模糊的偏好,这种模型在保护原始图像和劣化之间保持身份一致性更好地执行。我们进一步提出了超分辨率网络的自我调节块。该块将输入图像作为条件术语,以有效地利用面部结构信息,从而消除了对显式前沿的依赖性,例如,面部地标或边界。我们的模型在Celeba和真实世界的面部数据集上实现了最先进的性能。前者展示了我们所提出的建筑的强大生成能力,而后者展示了现实世界中的良好的身份一致性和感知品质。
translated by 谷歌翻译
Face Restoration (FR) aims to restore High-Quality (HQ) faces from Low-Quality (LQ) input images, which is a domain-specific image restoration problem in the low-level computer vision area. The early face restoration methods mainly use statistic priors and degradation models, which are difficult to meet the requirements of real-world applications in practice. In recent years, face restoration has witnessed great progress after stepping into the deep learning era. However, there are few works to study deep learning-based face restoration methods systematically. Thus, this paper comprehensively surveys recent advances in deep learning techniques for face restoration. Specifically, we first summarize different problem formulations and analyze the characteristic of the face image. Second, we discuss the challenges of face restoration. Concerning these challenges, we present a comprehensive review of existing FR methods, including prior based methods and deep learning-based methods. Then, we explore developed techniques in the task of FR covering network architectures, loss functions, and benchmark datasets. We also conduct a systematic benchmark evaluation on representative methods. Finally, we discuss future directions, including network designs, metrics, benchmark datasets, applications,etc. We also provide an open-source repository for all the discussed methods, which is available at https://github.com/TaoWangzj/Awesome-Face-Restoration.
translated by 谷歌翻译
Image restoration under hazy weather condition, which is called single image dehazing, has been of significant interest for various computer vision applications. In recent years, deep learning-based methods have achieved success. However, existing image dehazing methods typically neglect the hierarchy of features in the neural network and fail to exploit their relationships fully. To this end, we propose an effective image dehazing method named Hierarchical Contrastive Dehazing (HCD), which is based on feature fusion and contrastive learning strategies. HCD consists of a hierarchical dehazing network (HDN) and a novel hierarchical contrastive loss (HCL). Specifically, the core design in the HDN is a Hierarchical Interaction Module, which utilizes multi-scale activation to revise the feature responses hierarchically. To cooperate with the training of HDN, we propose HCL which performs contrastive learning on hierarchically paired exemplars, facilitating haze removal. Extensive experiments on public datasets, RESIDE, HazeRD, and DENSE-HAZE, demonstrate that HCD quantitatively outperforms the state-of-the-art methods in terms of PSNR, SSIM and achieves better visual quality.
translated by 谷歌翻译
在本文中,我们提出了D2C-SR,这是一个新颖的框架,用于实现现实世界图像超级分辨率的任务。作为一个不适的问题,超分辨率相关任务的关键挑战是给定的低分辨率输入可能会有多个预测。大多数基于经典的深度学习方法都忽略了基本事实,缺乏对基础高频分布的明确建模,从而导致结果模糊。最近,一些基于GAN或学习的超分辨率空间的方法可以生成模拟纹理,但不能保证具有低定量性能的纹理的准确性。重新思考这两者,我们以离散形式了解了基本高频细节的分布,并提出了两阶段的管道:分歧阶段到收敛阶段。在发散阶段,我们提出了一个基于树的结构深网作为差异骨干。提出了发散损失,以鼓励基于树的网络产生的结果,以分解可能的高频表示,这是我们对基本高频分布进行离散建模的方式。在收敛阶段,我们分配空间权重以融合这些不同的预测,以获得更准确的细节,以获取最终输出。我们的方法为推理提供了方便的端到端方式。我们对几个现实世界基准进行评估,包括具有X8缩放系数的新提出的D2CrealSR数据集。我们的实验表明,D2C-SR针对最先进的方法实现了更好的准确性和视觉改进,参数编号明显较少,并且我们的D2C结构也可以作为广义结构应用于其他一些方法以获得改进。我们的代码和数据集可在https://github.com/megvii-research/d2c-sr上找到
translated by 谷歌翻译
Existing convolutional neural networks (CNN) based image super-resolution (SR) methods have achieved impressive performance on bicubic kernel, which is not valid to handle unknown degradations in real-world applications. Recent blind SR methods suggest to reconstruct SR images relying on blur kernel estimation. However, their results still remain visible artifacts and detail distortion due to the estimation errors. To alleviate these problems, in this paper, we propose an effective and kernel-free network, namely DSSR, which enables recurrent detail-structure alternative optimization without blur kernel prior incorporation for blind SR. Specifically, in our DSSR, a detail-structure modulation module (DSMM) is built to exploit the interaction and collaboration of image details and structures. The DSMM consists of two components: a detail restoration unit (DRU) and a structure modulation unit (SMU). The former aims at regressing the intermediate HR detail reconstruction from LR structural contexts, and the latter performs structural contexts modulation conditioned on the learned detail maps at both HR and LR spaces. Besides, we use the output of DSMM as the hidden state and design our DSSR architecture from a recurrent convolutional neural network (RCNN) view. In this way, the network can alternatively optimize the image details and structural contexts, achieving co-optimization across time. Moreover, equipped with the recurrent connection, our DSSR allows low- and high-level feature representations complementary by observing previous HR details and contexts at every unrolling time. Extensive experiments on synthetic datasets and real-world images demonstrate that our method achieves the state-of-the-art against existing methods. The source code can be found at https://github.com/Arcananana/DSSR.
translated by 谷歌翻译
交互式图像恢复旨在通过调整几个控制系数来恢复图像,从而确定恢复强度。现有方法在学习已知降解类型和级别的监督下学习可控功能受到限制。当真正的降解与假设不同时,它们通常会遭受严重的性能下降。这样的限制是由于现实世界下降的复杂性,无法在培训期间对交互式调制提供明确的监督。但是,尚未研究如何实现现实世界中超级分辨率中的交互式调制。在这项工作中,我们提出了基于公制的实现现实世界超级分辨率(MM-REALSR)的交互式调制。具体而言,我们提出了一种无监督的退化估计策略,以估计现实情况下的降解水平。我们提出了一种度量学习策略,而不是将已知的降解水平作为对互动机制的明确监督,而是提出了一种度量策略,以将现实世界情景中的不可量化的降解水平映射到公制空间,该度量空间以不受监督的方式进行培训。此外,我们在度量学习过程中引入了锚点策略,以使度量空间的分布正常化。广泛的实验表明,所提出的MM-REALSR在现实世界中的超级分辨率中实现了出色的调制和恢复性能。代码可在https://github.com/tencentarc/mm-realsr上找到。
translated by 谷歌翻译
Single-image super-resolution (SISR) networks trained with perceptual and adversarial losses provide high-contrast outputs compared to those of networks trained with distortion-oriented losses, such as L1 or L2. However, it has been shown that using a single perceptual loss is insufficient for accurately restoring locally varying diverse shapes in images, often generating undesirable artifacts or unnatural details. For this reason, combinations of various losses, such as perceptual, adversarial, and distortion losses, have been attempted, yet it remains challenging to find optimal combinations. Hence, in this paper, we propose a new SISR framework that applies optimal objectives for each region to generate plausible results in overall areas of high-resolution outputs. Specifically, the framework comprises two models: a predictive model that infers an optimal objective map for a given low-resolution (LR) input and a generative model that applies a target objective map to produce the corresponding SR output. The generative model is trained over our proposed objective trajectory representing a set of essential objectives, which enables the single network to learn various SR results corresponding to combined losses on the trajectory. The predictive model is trained using pairs of LR images and corresponding optimal objective maps searched from the objective trajectory. Experimental results on five benchmarks show that the proposed method outperforms state-of-the-art perception-driven SR methods in LPIPS, DISTS, PSNR, and SSIM metrics. The visual results also demonstrate the superiority of our method in perception-oriented reconstruction. The code and models are available at https://github.com/seungho-snu/SROOE.
translated by 谷歌翻译