The hyperparameter optimization of neural network can be expressed as a bilevel optimization problem. The bilevel optimization is used to automatically update the hyperparameter, and the gradient of the hyperparameter is the approximate gradient based on the best response function. Finding the best response function is very time consuming. In this paper we propose CPMLHO, a new hyperparameter optimization method using cutting plane method and mixed-level objective function.The cutting plane is added to the inner layer to constrain the space of the response function. To obtain more accurate hypergradient,the mixed-level can flexibly adjust the loss function by using the loss of the training set and the verification set. Compared to existing methods, the experimental results show that our method can automatically update the hyperparameters in the training process, and can find more superior hyperparameters with higher accuracy and faster convergence.
translated by 谷歌翻译
机器学习中的超参数优化通常是使用只会导致大约一组超参数的幼稚技术来实现的。尽管贝叶斯优化之类的技术在给定超参数的给定域进行了智能搜索,但不能保证最佳解决方案。大多数这些方法的一个主要缺点是用超参数数量增加其搜索域的指数增加,从而增加了计算成本并使方法缓慢。超参数优化问题本质上是双重优化任务,一些研究尝试了解决此问题的双重解决方案方法。但是,这些研究假设了一组独特的模型权重,可以最大程度地减少训练损失,这通常受到深度学习体系结构的影响。本文讨论了一种基于梯度的双层方法,该方法解决了这些缺点以解决超参数优化问题。所提出的方法可以处理我们在实验中选择正则化高参数的连续超参数。该方法保证了本研究已在理论上证明的一组最佳超参数的收敛。该想法基于使用高斯过程回归近似较低级别的最佳值函数。结果,使用增强拉格朗日方法解决的单个级别约束优化任务缩小为单个级别约束优化任务。我们已经对多层感知器和LENET架构进行了有关MNIST和CIFAR-10数据集的广泛计算研究,以证实该方法的效率。一项针对网格搜索,随机搜索,贝叶斯优化和Hyberband方法的比较研究表明,所提出的算法会收敛于较低的计算,并导致模型在测试集上更好地推广。
translated by 谷歌翻译
We propose an algorithm for inexpensive gradient-based hyperparameter optimization that combines the implicit function theorem (IFT) with efficient inverse Hessian approximations. We present results on the relationship between the IFT and differentiating through optimization, motivating our algorithm. We use the proposed approach to train modern network architectures with millions of weights and millions of hyperparameters. We learn a data-augmentation networkwhere every weight is a hyperparameter tuned for validation performance-that outputs augmented training examples; we learn a distilled dataset where each feature in each datapoint is a hyperparameter; and we tune millions of regularization hyperparameters. Jointly tuning weights and hyperparameters with our approach is only a few times more costly in memory and compute than standard training.• We scale IFT-based hyperparameter optimization to modern, large neural architectures, including AlexNet and LSTM-based language models.• We demonstrate several uses for fitting hyperparameters almost as easily as weights, including perparameter regularization, data distillation, and learned-from-scratch data augmentation methods.• We explore how training-validation splits should change when tuning many hyperparameters.
translated by 谷歌翻译
双层优化,尤其是基于梯度的类别,已在深度学习社区中广泛使用,包括超参数优化和元知识提取。 BI级优化将一个问题嵌入了另一个问题,基于梯度的类别通过计算超级级别来解决外部级别的任务,这比经典方法(例如进化算法)更有效。在这项调查中,我们首先对基于梯度的双层优化进行正式定义。其次,我们说明了如何将研究问题作为双层优化问题,这对于初学者来说是极大的实际用途。更具体地说,有两种公式:单任务公式,以优化超参数,例如正则化参数和蒸馏数据,以及用于提取元知识的多任务公式,例如模型初始化。然后,使用BI级公式,我们讨论了四个BI级优化求解器,以更新外部变量,包括显式梯度更新,代理更新,隐式函数更新和闭合形式更新。最后但并非最不重要的一点是,我们通过指出基于梯度的双层优化科学问题(AI4Science)的巨大潜力来结束调查。
translated by 谷歌翻译
二重优化(BO)可用于解决各种重要的机器学习问题,包括但不限于超参数优化,元学习,持续学习和增强学习。常规的BO方法需要通过与隐式分化的低级优化过程进行区分,这需要与Hessian矩阵相关的昂贵计算。最近,人们一直在寻求BO的一阶方法,但是迄今为止提出的方法对于大规模的深度学习应用程序往往是复杂且不切实际的。在这项工作中,我们提出了一种简单的一阶BO算法,仅取决于一阶梯度信息,不需要隐含的区别,并且对于大规模的非凸函数而言是实用和有效的。我们为提出的方法提供了非注重方法分析非凸目标的固定点,并提出了表明其出色实践绩效的经验结果。
translated by 谷歌翻译
We introduce a framework based on bilevel programming that unifies gradient-based hyperparameter optimization and meta-learning. We show that an approximate version of the bilevel problem can be solved by taking into explicit account the optimization dynamics for the inner objective. Depending on the specific setting, the outer variables take either the meaning of hyperparameters in a supervised learning problem or parameters of a meta-learner. We provide sufficient conditions under which solutions of the approximate problem converge to those of the exact problem. We instantiate our approach for meta-learning in the case of deep learning where representation layers are treated as hyperparameters shared across a set of training episodes. In experiments, we confirm our theoretical findings, present encouraging results for few-shot learning and contrast the bilevel approach against classical approaches for learning-to-learn.
translated by 谷歌翻译
近年来,已经开发出各种基于梯度的方法来解决机器学习和计算机视觉地区的双层优化(BLO)问题。然而,这些现有方法的理论正确性和实际有效性总是依赖于某些限制性条件(例如,下层单身,LLS),这在现实世界中可能很难满足。此外,以前的文献仅证明了基于其特定的迭代策略的理论结果,因此缺乏一般的配方,以统一分析不同梯度的BLO的收敛行为。在这项工作中,我们从乐观的双级视点制定BLOS,并建立一个名为Bi-Level血液血统聚合(BDA)的新梯度的算法框架,以部分地解决上述问题。具体而言,BDA提供模块化结构,以分级地聚合上层和下层子问题以生成我们的双级迭代动态。从理论上讲,我们建立了一般会聚分析模板,并导出了一种新的证据方法,以研究基于梯度的BLO方法的基本理论特性。此外,这项工作系统地探讨了BDA在不同优化场景中的收敛行为,即,考虑从解决近似子问题返回的各种解决方案质量(即,全局/本地/静止解决方案)。广泛的实验证明了我们的理论结果,并展示了所提出的超参数优化和元学习任务算法的优越性。源代码可在https://github.com/vis-opt-group/bda中获得。
translated by 谷歌翻译
A core capability of intelligent systems is the ability to quickly learn new tasks by drawing on prior experience. Gradient (or optimization) based meta-learning has recently emerged as an effective approach for few-shot learning. In this formulation, meta-parameters are learned in the outer loop, while task-specific models are learned in the inner-loop, by using only a small amount of data from the current task. A key challenge in scaling these approaches is the need to differentiate through the inner loop learning process, which can impose considerable computational and memory burdens. By drawing upon implicit differentiation, we develop the implicit MAML algorithm, which depends only on the solution to the inner level optimization and not the path taken by the inner loop optimizer. This effectively decouples the meta-gradient computation from the choice of inner loop optimizer. As a result, our approach is agnostic to the choice of inner loop optimizer and can gracefully handle many gradient steps without vanishing gradients or memory constraints. Theoretically, we prove that implicit MAML can compute accurate meta-gradients with a memory footprint no more than that which is required to compute a single inner loop gradient and at no overall increase in the total computational cost. Experimentally, we show that these benefits of implicit MAML translate into empirical gains on few-shot image recognition benchmarks.
translated by 谷歌翻译
多级优化已被广泛用作无数机器学习问题的数学基础,例如超参数优化,元学习和增强学习,仅举几例。尽管如此,实施多级优化程序通常需要在数学和编程方面的专业知识,这在该领域的研究都阻碍了研究。我们通过引入贝蒂(Betty)(用于基于梯度的多级优化的高级软件库)迈出了缩小这一差距的第一步。为此,我们基于对多级优化作为数据流图的新解释开发自动分化过程。我们进一步将多级优化的主要组成部分作为Python类,以实现简单,模块化和可维护的编程。我们从经验上证明,Betty可以用作一系列多级优化程序的高级编程接口,同时观察到测试准确性的提高11 \%,GPU存储器使用率下降14 \%,而20 \%降低了。在多个基准上的现有实现的墙壁时间。该代码可从http://github.com/leopard-ai/betty获得。
translated by 谷歌翻译
在确定性优化中,通常假定问题的所有参数都是固定和已知的。但是,实际上,某些参数可能是未知的先验参数,但可以从历史数据中估算。典型的预测 - 优化方法将预测和优化分为两个阶段。最近,端到端的预测到优化已成为有吸引力的替代方法。在这项工作中,我们介绍了PYEPO软件包,这是一个基于Pytorch的端到端预测,然后在Python中进行了优化的库。据我们所知,PYEPO(发音为“带有静音” n“”的“菠萝”)是线性和整数编程的第一个通用工具,具有预测的目标函数系数。它提供了两种基本算法:第一种基于Elmachtoub&Grigas(2021)的开创性工作的凸替代损失函数,第二个基于Vlastelica等人的可区分黑盒求解器方法。 (2019)。 PYEPO提供了一个简单的接口,用于定义新的优化问题,最先进的预测 - 优化训练算法,自定义神经网络体系结构的使用以及端到端方法与端到端方法与与端到端方法的比较两阶段的方法。 PYEPO使我们能够进行一系列全面的实验,以比较沿轴上的多种端到端和两阶段方法,例如预测准确性,决策质量和运行时间,例如最短路径,多个背包和旅行等问题销售人员问题。我们讨论了这些实验中的一些经验见解,这些见解可以指导未来的研究。 PYEPO及其文档可在https://github.com/khalil-research/pyepo上找到。
translated by 谷歌翻译
基于深度学习的方法,例如物理知识的神经网络(PINN)和DeepOnets已显示出解决PDE受约束优化(PDECO)问题的希望。但是,现有方法不足以处理对优化目标具有复杂或非线性依赖性的PDE约束。在本文中,我们提出了一个新颖的双层优化框架,以通过将目标和约束的优化解耦来解决挑战。对于内部循环优化,我们采用PINN仅解决PDE约束。对于外循环,我们通过基于隐式函数定理(IFT)使用Broyden的方法来设计一种新颖的方法,该方法对于近似高度级别而言是有效且准确的。我们进一步介绍了高度级计算的理论解释和误差分析。在多个大规模和非线性PDE约束优化问题上进行了广泛的实验表明,与强基础相比,我们的方法可实现最新的结果。
translated by 谷歌翻译
我们提出了一个模型不确定性感知的可区分架构搜索($ \ mu $ darts),该搜索优化神经网络以同时达到高精度和低不确定性。我们在DARTS单元中引入混凝土辍学,并在训练损失中包括一个蒙特卡洛正规器,以优化混凝土辍学概率。在验证损失中引入了预测差异项,以使搜索具有最小模型不确定性的体系结构。与现有的DARTS方法相比,CIFAR10,CIFAR100,SVHN和ImageNet上的实验验证了$ \ MU $ $ $ $ $ $的实验。此外,与从现有的飞镖方法获得的体系结构相比,从$ \ mu $ darts获得的最终体系结构显示出更高的噪声稳健性。
translated by 谷歌翻译
二重优化发现在现代机器学习问题中发现了广泛的应用,例如超参数优化,神经体系结构搜索,元学习等。而具有独特的内部最小点(例如,内部功能是强烈凸的,都具有唯一的内在最小点)的理解,这是充分理解的,多个内部最小点的问题仍然是具有挑战性和开放的。为此问题设计的现有算法适用于限制情况,并且不能完全保证融合。在本文中,我们采用了双重优化的重新制定来限制优化,并通过原始的双二线优化(PDBO)算法解决了问题。 PDBO不仅解决了多个内部最小挑战,而且还具有完全一阶效率的情况,而无需涉及二阶Hessian和Jacobian计算,而不是大多数现有的基于梯度的二杆算法。我们进一步表征了PDBO的收敛速率,它是与多个内部最小值的双光线优化的第一个已知的非质合收敛保证。我们的实验证明了所提出的方法的预期性能。
translated by 谷歌翻译
模型不合时宜的元学习(MAML)是最成功的元学习技术之一。它使用梯度下降来学习各种任务之间的共同点,从而使模型能够学习其自身参数的元定义,以使用少量标记的培训数据快速适应新任务。几次学习的关键挑战是任务不确定性。尽管可以从具有大量任务的元学习中获得强大的先验,但是由于训练数据集的数量通常太小,因此无法保证新任务的精确模型。在这项研究中,首先,在选择初始化参数的过程中,为特定于任务的学习者提出了新方法,以适应性地学习选择最小化新任务损失的初始化参数。然后,我们建议对元损失部分的两种改进的方法:方法1通过比较元损失差异来生成权重,以提高几个类别时的准确性,而方法2引入了每个任务的同质不确定性,以根据多个损失,以基于多个损失。原始的梯度下降是一种增强新型类别的概括能力的方式,同时确保了准确性的提高。与以前的基于梯度的元学习方法相比,我们的模型在回归任务和少量分类中的性能更好,并提高了模型的鲁棒性,对元测试集中的学习率和查询集。
translated by 谷歌翻译
在本文中,我们开发了损失功能学习的新兴主题,该主题旨在学习损失功能,从而显着提高在其下方训练的模型的性能。具体而言,我们提出了一个新的元学习框架,用于通过混合神经符号搜索方法来学习模型 - 不足的损失函数。该框架首先使用基于进化的方法来搜索原始数学操作的空间,以找到一组符号损耗函数。其次,随后通过基于端梯度的训练程序对学习的损失功能集进行了参数化和优化。拟议框架的多功能性在经验上得到了各种监督的学习任务的经验验证。结果表明,通过新提出的方法发现的元学习损失函数在各种神经网络体系结构和数据集上都超过了交叉渗透丢失和最新的损失函数学习方法。
translated by 谷歌翻译
找到模型的最佳超参数可以作为双重优化问题,通常使用零级技术解决。在这项工作中,当内部优化问题是凸但不平滑时,我们研究一阶方法。我们表明,近端梯度下降和近端坐标下降序列序列的前向模式分化,雅各比人会收敛到精确的雅各布式。使用隐式差异化,我们表明可以利用内部问题的非平滑度来加快计算。最后,当内部优化问题大约解决时,我们对高度降低的误差提供了限制。关于回归和分类问题的结果揭示了高参数优化的计算益处,尤其是在需要多个超参数时。
translated by 谷歌翻译
Many problems in machine learning involve bilevel optimization (BLO), including hyperparameter optimization, meta-learning, and dataset distillation. Bilevel problems consist of two nested sub-problems, called the outer and inner problems, respectively. In practice, often at least one of these sub-problems is overparameterized. In this case, there are many ways to choose among optima that achieve equivalent objective values. Inspired by recent studies of the implicit bias induced by optimization algorithms in single-level optimization, we investigate the implicit bias of gradient-based algorithms for bilevel optimization. We delineate two standard BLO methods -- cold-start and warm-start -- and show that the converged solution or long-run behavior depends to a large degree on these and other algorithmic choices, such as the hypergradient approximation. We also show that the inner solutions obtained by warm-start BLO can encode a surprising amount of information about the outer objective, even when the outer parameters are low-dimensional. We believe that implicit bias deserves as central a role in the study of bilevel optimization as it has attained in the study of single-level neural net optimization.
translated by 谷歌翻译
Bilevel optimization plays an essential role in many machine learning tasks, ranging from hyperparameter optimization to meta-learning. Existing studies on bilevel optimization, however, focus on either centralized or synchronous distributed setting. The centralized bilevel optimization approaches require collecting massive amount of data to a single server, which inevitably incur significant communication expenses and may give rise to data privacy risks. Synchronous distributed bilevel optimization algorithms, on the other hand, often face the straggler problem and will immediately stop working if a few workers fail to respond. As a remedy, we propose Asynchronous Distributed Bilevel Optimization (ADBO) algorithm. The proposed ADBO can tackle bilevel optimization problems with both nonconvex upper-level and lower-level objective functions, and its convergence is theoretically guaranteed. Furthermore, it is revealed through theoretic analysis that the iteration complexity of ADBO to obtain the $\epsilon$-stationary point is upper bounded by $\mathcal{O}(\frac{1}{{{\epsilon ^2}}})$. Thorough empirical studies on public datasets have been conducted to elucidate the effectiveness and efficiency of the proposed ADBO.
translated by 谷歌翻译
数据增强是减少过度装备和提高学习性能的重要技术,但是现有的3D点云数据的数据增强的工作基于启发式。在这项工作中,我们建议使用Bilevel优化自动学习数据增强策略。增强器以类似的方式设计为条件发生器,并且在增强输入用于训练模型时最小化基础模型对验证集的损耗来进行优化。此配方提供了更为原则的方法来学习3D点云上的数据增强。我们评估了我们对标准点云分类任务的方法以及培训和验证/测试集之间的构成错位的更具挑战性。该拟议的战略在两个任务方面实现了竞争性能,我们提供了进一步了解增强者学习验证集分发的能力。
translated by 谷歌翻译
在本文中,我们为多个变量的非凸问题提出了一种新颖的解决方案,尤其是对于通常通过交替最小化(AM)策略解决的方法,将原始优化问题拆分为一组与每个变量相对应的子问题,然后使用固定的更新规则迭代优化每个子问题。但是,由于原始优化问题的固有非凸性,即使在每次迭代中可以最佳地解决每个子问题时,优化通常也可以捕获到虚假的局部最小值中。同时,基于学习的方法,例如深层展开算法,受到缺乏标记的数据和有限的解释性的高度限制。为了解决这些问题,我们提出了一种基于元学习的交替最小化(MLAM)方法,该方法旨在最大程度地减少全球损失的部分损失,而不是在每个子问题上最小化,并且倾向于学习一种自适应策略,以学习一种自适应策略更换手工制作的对手,以提前表现出色。同时,拟议的Mlam仍然保持原始算法原则,这有助于更好的解释性。我们在两个代表性问题上评估了提出的方法,即双线性逆问题:矩阵完成和非线性问题:高斯混合模型。实验结果验证了我们所提出的方法在标准设置中的表现优于基于AM的方法,并且能够在具有挑战性的情况下实现有效的优化,而其他比较方法通常会失败。
translated by 谷歌翻译