众所周知,无监督的域适应性(UDA)可以在源域上进行模型的性能,以提高其在目标域上的性能。为了解决该问题,最近提出了无监督的域扩展(UDE),以像UDA一样适应目标域的模型,同时保持其在源域上的性能。对于UDA和UDE,量身定制为给定域的模型,假设它是源或目标域,可以很好地处理给定域中的样品。我们通过报告跨域视觉歧义的存在来质疑假设:由于两个域之间缺乏结晶的边界,一个域中的样品可以在视觉上接近另一个域。我们利用了这一发现,并因此在本文中提出了共同的教学(CT),其中包括基于知识蒸馏的CT(KDCT)和基于混音的CT(MICT)。具体来说,KDCT将知识从领导者网络和助理教师网络转移到学生网络,因此,学生将更好地处理跨域视觉歧义。同时,MICT进一步增强了学生的概括能力。对两个图像分类基准和两个驾驶场所分割基准的全面实验证明了该方法的可行性。
translated by 谷歌翻译
This work introduces the novel task of Source-free Multi-target Domain Adaptation and proposes adaptation framework comprising of \textbf{Co}nsistency with \textbf{N}uclear-Norm Maximization and \textbf{Mix}Up knowledge distillation (\textit{CoNMix}) as a solution to this problem. The main motive of this work is to solve for Single and Multi target Domain Adaptation (SMTDA) for the source-free paradigm, which enforces a constraint where the labeled source data is not available during target adaptation due to various privacy-related restrictions on data sharing. The source-free approach leverages target pseudo labels, which can be noisy, to improve the target adaptation. We introduce consistency between label preserving augmentations and utilize pseudo label refinement methods to reduce noisy pseudo labels. Further, we propose novel MixUp Knowledge Distillation (MKD) for better generalization on multiple target domains using various source-free STDA models. We also show that the Vision Transformer (VT) backbone gives better feature representation with improved domain transferability and class discriminability. Our proposed framework achieves the state-of-the-art (SOTA) results in various paradigms of source-free STDA and MTDA settings on popular domain adaptation datasets like Office-Home, Office-Caltech, and DomainNet. Project Page: https://sites.google.com/view/conmix-vcl
translated by 谷歌翻译
Domain adaptive object detection (DAOD) aims to alleviate transfer performance degradation caused by the cross-domain discrepancy. However, most existing DAOD methods are dominated by computationally intensive two-stage detectors, which are not the first choice for industrial applications. In this paper, we propose a novel semi-supervised domain adaptive YOLO (SSDA-YOLO) based method to improve cross-domain detection performance by integrating the compact one-stage detector YOLOv5 with domain adaptation. Specifically, we adapt the knowledge distillation framework with the Mean Teacher model to assist the student model in obtaining instance-level features of the unlabeled target domain. We also utilize the scene style transfer to cross-generate pseudo images in different domains for remedying image-level differences. In addition, an intuitive consistency loss is proposed to further align cross-domain predictions. We evaluate our proposed SSDA-YOLO on public benchmarks including PascalVOC, Clipart1k, Cityscapes, and Foggy Cityscapes. Moreover, to verify its generalization, we conduct experiments on yawning detection datasets collected from various classrooms. The results show considerable improvements of our method in these DAOD tasks. Our code is available on \url{https://github.com/hnuzhy/SSDA-YOLO}.
translated by 谷歌翻译
语义分割在广泛的计算机视觉应用中起着基本作用,提供了全球对图像​​的理解的关键信息。然而,最先进的模型依赖于大量的注释样本,其比在诸如图像分类的任务中获得更昂贵的昂贵的样本。由于未标记的数据替代地获得更便宜,因此无监督的域适应达到了语义分割社区的广泛成功并不令人惊讶。本调查致力于总结这一令人难以置信的快速增长的领域的五年,这包含了语义细分本身的重要性,以及将分段模型适应新环境的关键需求。我们提出了最重要的语义分割方法;我们对语义分割的域适应技术提供了全面的调查;我们揭示了多域学习,域泛化,测试时间适应或无源域适应等较新的趋势;我们通过描述在语义细分研究中最广泛使用的数据集和基准测试来结束本调查。我们希望本调查将在学术界和工业中提供具有全面参考指导的研究人员,并有助于他们培养现场的新研究方向。
translated by 谷歌翻译
开放的复合域适应(OCDA)将目标域视为多个未知同质子域的化合物。 OCDA的目的是最大程度地减少标记的源域和未标记的复合目标域之间的域间隙,这使对未见域的模型概括有益。当前用于语义分割方法的OCDA采用手动域分离,并采用单个模型同时适应所有目标子域。但是,适应目标子域可能会阻碍该模型适应其他不同目标子域,从而导致性能有限。在这项工作中,我们引入了一个带有双向光度混合的多教学框架,以分别适应每个目标子域。首先,我们提出一个自动域分离,以找到最佳的子域数。在此基础上,我们提出了一个多教学框架,在该框架中,每个教师模型都使用双向光度混合来适应一个目标子域。此外,我们进行自适应蒸馏以学习学生模型并应用一致性正规化以改善学生的概括。基准数据集上的实验结果显示了针对复合域和开放域对现有最新方法的拟议方法的功效。
translated by 谷歌翻译
While deep learning methods hitherto have achieved considerable success in medical image segmentation, they are still hampered by two limitations: (i) reliance on large-scale well-labeled datasets, which are difficult to curate due to the expert-driven and time-consuming nature of pixel-level annotations in clinical practices, and (ii) failure to generalize from one domain to another, especially when the target domain is a different modality with severe domain shifts. Recent unsupervised domain adaptation~(UDA) techniques leverage abundant labeled source data together with unlabeled target data to reduce the domain gap, but these methods degrade significantly with limited source annotations. In this study, we address this underexplored UDA problem, investigating a challenging but valuable realistic scenario, where the source domain not only exhibits domain shift~w.r.t. the target domain but also suffers from label scarcity. In this regard, we propose a novel and generic framework called ``Label-Efficient Unsupervised Domain Adaptation"~(LE-UDA). In LE-UDA, we construct self-ensembling consistency for knowledge transfer between both domains, as well as a self-ensembling adversarial learning module to achieve better feature alignment for UDA. To assess the effectiveness of our method, we conduct extensive experiments on two different tasks for cross-modality segmentation between MRI and CT images. Experimental results demonstrate that the proposed LE-UDA can efficiently leverage limited source labels to improve cross-domain segmentation performance, outperforming state-of-the-art UDA approaches in the literature. Code is available at: https://github.com/jacobzhaoziyuan/LE-UDA.
translated by 谷歌翻译
培训语义细分模型的现实世界注释收集是一个昂贵的过程。无监督的域适应性(UDA)试图通过研究如何使用更多可访问的数据(例如合成数据)来训练和适应现实世界图像而无需其注释,以解决此问题。最近的UDA方法通过使用学生和教师网络对像素的分类损失进行培训,适用于自学习。在本文中,我们建议通过对网络输出中元素之间的像素间关系进行建模,将一致性正则项添加到半监督UDA中。我们通过将其应用于最先进的涂抹式框架并将GTA5上的MIOU1绩效应用于CityScapes Benchmark,并在Synthia上的MIOU16绩效提高了MIOU19在Synthia上的效果,并将MIOU19上的MIOU1上的性能提高到CityScapes基准,将其应用于CityScapes Benchmark,并将MIOU19上的MIOU1上的性能提高到CityScapes基准,从而证明了拟议的一致性正规化项的有效性。
translated by 谷歌翻译
最近3D点云学习一直是计算机视觉和自主驾驶中的热门话题。由于事实上,难以手动注释一个定性的大型3D点云数据集,无监督的域适应(UDA)在3D点云学习中流行,旨在将学习知识从标记的源域转移到未标记的目标领域。然而,具有简单学习模型引起的域转移引起的泛化和重建误差是不可避免的,这基本上阻碍了模型的学习良好表示的能力。为了解决这些问题,我们提出了一个结束到底自组合网络(SEN),用于3D云域适应任务。一般来说,我们的森林度假前的含义教师和半监督学习的优势,并引入了软的分类损失和一致性损失,旨在实现一致的泛化和准确的重建。在森中,学生网络以具有监督的学习和自我监督学习的协作方式,教师网络进行时间一致性,以学习有用的表示,并确保点云重建的质量。在几个3D点云UDA基准上的广泛实验表明,我们的SEN在分类和分段任务中表现出最先进的方法。此外,进一步的分析表明,我们的森也实现了更好的重建结果。
translated by 谷歌翻译
无监督域适应(UDA)旨在将知识从相关但不同的良好标记的源域转移到新的未标记的目标域。大多数现有的UDA方法需要访问源数据,因此当数据保密而不相配在隐私问题时,不适用。本文旨在仅使用培训的分类模型来解决现实设置,而不是访问源数据。为了有效地利用适应源模型,我们提出了一种新颖的方法,称为源假设转移(拍摄),其通过将目标数据特征拟合到冻结源分类模块(表示分类假设)来学习目标域的特征提取模块。具体而言,拍摄挖掘出于特征提取模块的信息最大化和自我监督学习,以确保目标特征通过同一假设与看不见的源数据的特征隐式对齐。此外,我们提出了一种新的标签转移策略,它基于预测的置信度(标签信息),然后采用半监督学习来将目标数据分成两个分裂,然后提高目标域中的较为自信预测的准确性。如果通过拍摄获得预测,我们表示标记转移为拍摄++。关于两位数分类和对象识别任务的广泛实验表明,拍摄和射击++实现了与最先进的结果超越或相当的结果,展示了我们对各种视域适应问题的方法的有效性。代码可用于\ url {https://github.com/tim-learn/shot-plus}。
translated by 谷歌翻译
While transformers have greatly boosted performance in semantic segmentation, domain adaptive transformers are not yet well explored. We identify that the domain gap can cause discrepancies in self-attention. Due to this gap, the transformer attends to spurious regions or pixels, which deteriorates accuracy on the target domain. We propose to perform adaptation on attention maps with cross-domain attention layers that share features between the source and the target domains. Specifically, we impose consistency between predictions from cross-domain attention and self-attention modules to encourage similar distribution in the attention and output of the model across domains, i.e., attention-level and output-level alignment. We also enforce consistency in attention maps between different augmented views to further strengthen the attention-based alignment. Combining these two components, our method mitigates the discrepancy in attention maps across domains and further boosts the performance of the transformer under unsupervised domain adaptation settings. Our model outperforms the existing state-of-the-art baseline model on three widely used benchmarks, including GTAV-to-Cityscapes by 1.3 percent point (pp), Synthia-to-Cityscapes by 0.6 pp, and Cityscapes-to-ACDC by 1.1 pp, on average. Additionally, we verify the effectiveness and generalizability of our method through extensive experiments. Our code will be publicly available.
translated by 谷歌翻译
在无监督的域适应性(UDA)中,直接从源到目标域的适应通常会遭受明显的差异,并导致对齐不足。因此,许多UDA的作品试图通过各种中间空间逐渐和轻柔地消失域间隙,这些空间被称为域桥接(DB)。但是,对于诸如域自适应语义分割(DASS)之类的密集预测任务,现有的解决方案主要依赖于粗糙的样式转移以及如何优雅地桥接域的优雅桥梁。在这项工作中,我们诉诸于数据混合以建立用于DASS的经过经过经过经过讨论的域桥接(DDB),通过该域的源和目标域的联合分布与中间空间中的每个分布进行对齐并与每个分布。 DDB的核心是双路径域桥接步骤,用于使用粗糙和精细的数据混合技术生成两个中间域,以及一个跨路径知识蒸馏步骤,用于对两个互补模型进行对生成的中间样品进行培训的互补模型作为“老师”以多教老师的蒸馏方式发展出色的“学生”。这两个优化步骤以交替的方式工作,并相互加强以具有强大的适应能力引起DDB。对具有不同设置的自适应分割任务进行的广泛实验表明,我们的DDB显着优于最先进的方法。代码可从https://github.com/xiaoachen98/ddb.git获得。
translated by 谷歌翻译
为了缓解标签的负担,无监督的域适应(UDA)旨在将知识传输到新的未标记数据集(目标)中的标记数据集(源)。尽管进展令人印象深刻,但先前的方法总是需要访问原始源数据,并开发数据相关的对准方法以以转换的学习方式识别目标样本,这可能会从源头中提高隐私问题。几个最近的研究通过利用来自源域的训练有素的白盒模型来替代解决方案,然而,它仍可能通过生成的对抗性学习泄漏原始数据。本文研究了UDA的实用和有趣的设置,其中仅在目标域中的适应期间提供了黑盒源模型(即,仅可用网络预测)。为了解决这个问题,我们提出了一个名为蒸馏和微调(用餐)的新的两步知识适应框架。考虑到目标数据结构,用餐首先将知识从源预测器蒸馏到定制的目标模型,然后微调蒸馏模型以进一步适合目标域。此外,神经网络不需要在用餐中的域中相同,甚至允许有效地适应低资源设备。三个UDA场景(即单源,多源和部分集)的经验结果确认,与最先进的数据相关的方法相比,该用途达到了高竞争力的性能。代码可用于\ url {https://github.com/tim-learn/dine/}。
translated by 谷歌翻译
半监督域适应(SSDA)是将学习者调整到新域,只有一小组标记的数据集在源域上给出时,只有一小组标记的样本。在本文中,我们提出了一种基于对的SSDA方法,使用用样品对的自蒸馏来适应靶域的模型。每个样本对由来自标记数据集(即源或标记为目标)的教师样本以及来自未标记数据集的学生样本(即,未标记的目标)组成。我们的方法通过在教师和学生之间传输中间样式来生成助手功能,然后通过最小化学生和助手之间的输出差异来培训模型。在培训期间,助手逐渐弥合了两个域之间的差异,从而让学生容易地从老师那里学习。标准基准测试的实验评估表明,我们的方法有效地减少了域间和域内的差异,从而实现了对最近的方法的显着改进。
translated by 谷歌翻译
深度神经网络(DNN)极大地促进了语义分割中的性能增益。然而,训练DNN通常需要大量的像素级标记数据,这在实践中收集昂贵且耗时。为了减轻注释负担,本文提出了一种自组装的生成对抗网络(SE-GAN)利用语义分割的跨域数据。在SE-GaN中,教师网络和学生网络构成用于生成语义分割图的自组装模型,与鉴别器一起形成GaN。尽管它很简单,我们发现SE-GaN可以显着提高对抗性训练的性能,提高模型的稳定性,这是由大多数普遍培训的方法共享的常见障碍。我们理论上分析SE-GaN并提供$ \ Mathcal o(1 / \ sqrt {n})$泛化绑定($ n $是培训样本大小),这表明控制了鉴别者的假设复杂性,以提高概括性。因此,我们选择一个简单的网络作为鉴别器。两个标准设置中的广泛和系统实验表明,该方法显着优于最新的最先进的方法。我们模型的源代码即将推出。
translated by 谷歌翻译
学习目标域中的未知样本(不存在于源类中)对于无监督域适应(UDA)相当重要。存在两个典型的UDA方案,即开放式和开放式集合,后者假定目标域中并非所有源类都显示在内。但是,大多数先前的方法都是为一个UDA场景而设计的,并且始终在其他UDA方案上表现差。此外,它们还需要在适应过程中标记的源数据,限制其在数据隐私敏感应用中的可用性。为了解决这些问题,本文提出了一种通用模型适应(UMAD)框架,其处理了UDA方案,而无需访问源数据,也不是关于域之间类别的类别的知识。具体而言,我们的目标是使用优雅设计的双头分类器来学习源模型,并将其提供给目标域。在适应期间,我们开发了一种信息丰富的一致性分数,以帮助区分从已知样品中的未知样本。为了在目标域中实现双边适应,我们进一步最大化了局部化的相互信息,以将已知的样本与源分类器对齐,并采用熵丢失,以便分别推动远离源分类边界的未知样本。开放式和开放式的UDA方案的实验表明,umad作为无需访问源数据的统一方法,展示与最先进的数据相关方法的可比性。
translated by 谷歌翻译
无监督的域适应性(UDA)引起了相当大的关注,这将知识从富含标签的源域转移到相关但未标记的目标域。减少域间差异一直是提高UDA性能的关键因素,尤其是对于源域和目标域之间存在较大差距的任务。为此,我们提出了一种新颖的风格感知功能融合方法(SAFF),以弥合大域间隙和转移知识,同时减轻阶级歧视性信息的丧失。受到人类传递推理和学习能力的启发,研究了一种新颖的风格感知的自我互化领域(SSID),通过一系列中级辅助综合概念将两个看似无关的概念联系起来。具体而言,我们提出了一种新颖的SSID学习策略,该策略从源和目标域中选择样本作为锚点,然后随机融合这些锚的对象和样式特征,以生成具有标记和样式丰富的中级辅助功能以进行知识转移。此外,我们设计了一个外部存储库来存储和更新指定的标记功能,以获得稳定的类功能和班级样式功能。基于提议的内存库,内部和域间损耗功能旨在提高类识别能力和特征兼容性。同时,我们通过无限抽样模拟SSID的丰富潜在特征空间,并通过数学理论模拟损失函数的收敛性。最后,我们对常用的域自适应基准测试进行了全面的实验,以评估所提出的SAFF,并且实验结果表明,所提出的SAFF可以轻松地与不同的骨干网络结合在一起,并获得更好的性能作为插入插型模块。
translated by 谷歌翻译
在这项工作中,我们试图通过设计简单和紧凑的条件领域的逆势培训方法来解决无监督的域适应。我们首先重新审视简单的级联调节策略,其中特征与输出预测连接为鉴别器的输入。我们发现倾斜策略遭受了弱势调节力量。我们进一步证明扩大连接预测的规范可以有效地激励条件域对齐。因此,我们通过将输出预测标准化具有相同的特征的输出预测来改善连接调节,并且派生方法作为归一化输出调节器〜(名词)。然而,对域对齐的原始输出预测的调理,名词遭受目标域的不准确预测。为此,我们建议将原型空间中的跨域特征对齐方式而不是输出空间。将新的原型基于原型的调节与名词相结合,我们将增强方法作为基于原型的归一化输出调节器〜(代词)。对象识别和语义分割的实验表明,名词可以有效地对准域跨域的多模态结构,甚至优于最先进的域侵犯训练方法。与基于原型的调节一起,代词进一步提高了UDA的多个对象识别基准上的名词的适应性能。
translated by 谷歌翻译
域适应(da)尝试将知识从标记的源域传输到从源的不同分发的未标记的目标域。为此,DA方法包括源分类目标,以提取源知识和域对齐目标以减少域移位,确保知识转移。通常,前DA方法采用一些重量的超参数来线性地结合培训目标来形成整体目标。然而,由于域移位,这些目标的梯度方向可能彼此冲突。在这种情况下,线性优化方案可能会降低整体目标值,以损坏其中一个培训目标,导致限制解决方案。在本文中,我们从基于梯度的角度来看了DA的优化方案。我们提出了帕累托域适应(Paretoda)方法来控制整体优化方向,旨在协同优化所有培训目标。具体地,为了达到目标域的理想解决方案,我们设计了模拟目标分类的替代损失。为了提高目标预测准确性以支持模拟,我们提出了一种目标预测精炼机制,其通过贝叶斯定理利用域标签。另一方面,由于对象的加权方案的先验知识通常无法指导优化来接近目标域上的最佳解决方案,因此我们提出了一种动态的偏好机制,以动态指导我们的合作优化通过替代损失的梯度保持未标记的目标数据集。关于图像分类和语义分割基准的广泛实验证明了Paretoda的有效性
translated by 谷歌翻译
无监督的域适应(UDA)旨在将标记的源分布与未标记的目标分布对齐,以获取域不变预测模型。然而,众所周知的UDA方法的应用在半监督域适应(SSDA)方案中不完全概括,其中来自目标域的少数标记的样本可用。在本文中,我们提出了一种用于半监督域适应(CLDA)的简单对比学习框架,该框架试图在SSDA中弥合标记和未标记的目标分布与源极和未标记的目标分布之间的域间差距之间的域间隙。我们建议采用类明智的对比学学习来降低原始(输入图像)和强大增强的未标记目标图像之间的域间间隙和实例级对比度对准,以最小化域内差异。我们已经凭经验表明,这两个模块相互补充,以实现卓越的性能。在三个众所周知的域适应基准数据集中的实验即Domainnet,Office-Home和Office31展示了我们方法的有效性。 CLDA在所有上述数据集上实现最先进的结果。
translated by 谷歌翻译
传统的域自适应语义细分解决了在有限或没有其他监督下,将模型调整为新的目标域的任务。在解决输入域间隙的同时,标准域的适应设置假设输出空间没有域的变化。在语义预测任务中,通常根据不同的语义分类法标记不同的数据集。在许多现实世界中,目标域任务需要与源域施加的分类法不同。因此,我们介绍了更通用的自适应跨域语义细分(TAC)问题,从而使两个域之间的分类学不一致。我们进一步提出了一种共同解决图像级和标签级域适应的方法。在标签级别上,我们采用双边混合采样策略来增强目标域,并采用重新标记方法来统一和对齐标签空间。我们通过提出一种不确定性构造的对比度学习方法来解决图像级域间隙,从而导致更多的域不变和类别的歧义特征。我们在不同的TACS设置下广泛评估了框架的有效性:开放分类法,粗到精细的分类学和隐式重叠的分类学。我们的方法的表现超过了先前的最先进的利润,同时能够适应目标分类法。我们的实施可在https://github.com/ethruigong/tada上公开获得。
translated by 谷歌翻译