Mikolov等人。(2013A)观察到,连续的单词(CBOW)Word Embeddings倾向于表现不佳的跳过(SG)嵌入,并在随后的作品中报告了这一发现。我们发现这些观察结果不是通过他们的培训目标的基本差异,但更有可能在官方实施,Word2Vec.c和Gensim等流行图书馆中的错误负面采样CBY实施。我们展示在纠正CBY渐变更新中的错误后,可以从各种内在和外在任务中学习与SG完全竞争的CBY Word Embeddings,同时培训速度速度较快。
translated by 谷歌翻译
Recent methods for learning vector space representations of words have succeeded in capturing fine-grained semantic and syntactic regularities using vector arithmetic, but the origin of these regularities has remained opaque. We analyze and make explicit the model properties needed for such regularities to emerge in word vectors. The result is a new global logbilinear regression model that combines the advantages of the two major model families in the literature: global matrix factorization and local context window methods. Our model efficiently leverages statistical information by training only on the nonzero elements in a word-word cooccurrence matrix, rather than on the entire sparse matrix or on individual context windows in a large corpus. The model produces a vector space with meaningful substructure, as evidenced by its performance of 75% on a recent word analogy task. It also outperforms related models on similarity tasks and named entity recognition.
translated by 谷歌翻译
Continuous word representations, trained on large unlabeled corpora are useful for many natural language processing tasks. Popular models that learn such representations ignore the morphology of words, by assigning a distinct vector to each word. This is a limitation, especially for languages with large vocabularies and many rare words. In this paper, we propose a new approach based on the skipgram model, where each word is represented as a bag of character n-grams. A vector representation is associated to each character n-gram; words being represented as the sum of these representations. Our method is fast, allowing to train models on large corpora quickly and allows us to compute word representations for words that did not appear in the training data. We evaluate our word representations on nine different languages, both on word similarity and analogy tasks. By comparing to recently proposed morphological word representations, we show that our vectors achieve state-of-the-art performance on these tasks.
translated by 谷歌翻译
Embedding words in vector space is a fundamental first step in state-of-the-art natural language processing (NLP). Typical NLP solutions employ pre-defined vector representations to improve generalization by co-locating similar words in vector space. For instance, Word2Vec is a self-supervised predictive model that captures the context of words using a neural network. Similarly, GLoVe is a popular unsupervised model incorporating corpus-wide word co-occurrence statistics. Such word embedding has significantly boosted important NLP tasks, including sentiment analysis, document classification, and machine translation. However, the embeddings are dense floating-point vectors, making them expensive to compute and difficult to interpret. In this paper, we instead propose to represent the semantics of words with a few defining words that are related using propositional logic. To produce such logical embeddings, we introduce a Tsetlin Machine-based autoencoder that learns logical clauses self-supervised. The clauses consist of contextual words like "black," "cup," and "hot" to define other words like "coffee," thus being human-understandable. We evaluate our embedding approach on several intrinsic and extrinsic benchmarks, outperforming GLoVe on six classification tasks. Furthermore, we investigate the interpretability of our embedding using the logical representations acquired during training. We also visualize word clusters in vector space, demonstrating how our logical embedding co-locate similar words.
translated by 谷歌翻译
The distributed representation of symbols is one of the key technologies in machine learning systems today, playing a pivotal role in modern natural language processing. Traditional word embeddings associate a separate vector with each word. While this approach is simple and leads to good performance, it requires a lot of memory for representing a large vocabulary. To reduce the memory footprint, the default embedding layer in spaCy is a hash embeddings layer. It is a stochastic approximation of traditional embeddings that provides unique vectors for a large number of words without explicitly storing a separate vector for each of them. To be able to compute meaningful representations for both known and unknown words, hash embeddings represent each word as a summary of the normalized word form, subword information and word shape. Together, these features produce a multi-embedding of a word. In this technical report we lay out a bit of history and introduce the embedding methods in spaCy in detail. Second, we critically evaluate the hash embedding architecture with multi-embeddings on Named Entity Recognition datasets from a variety of domains and languages. The experiments validate most key design choices behind spaCy's embedders, but we also uncover a few surprising results.
translated by 谷歌翻译
We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers. Unlike recent language representation models (Peters et al., 2018a;Radford et al., 2018), BERT is designed to pretrain deep bidirectional representations from unlabeled text by jointly conditioning on both left and right context in all layers. As a result, the pre-trained BERT model can be finetuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such as question answering and language inference, without substantial taskspecific architecture modifications.BERT is conceptually simple and empirically powerful. It obtains new state-of-the-art results on eleven natural language processing tasks, including pushing the GLUE score to 80.5% (7.7% point absolute improvement), MultiNLI accuracy to 86.7% (4.6% absolute improvement), SQuAD v1.1 question answering Test F1 to 93.2 (1.5 point absolute improvement) and SQuAD v2.0 Test F1 to 83.1 (5.1 point absolute improvement).
translated by 谷歌翻译
Recent trends in language modeling have focused on increasing performance through scaling, and have resulted in an environment where training language models is out of reach for most researchers and practitioners. While most in the community are asking how to push the limits of extreme computation, we ask the opposite question: How far can we get with a single GPU in just one day? We investigate the downstream performance achievable with a transformer-based language model trained completely from scratch with masked language modeling for a single day on a single consumer GPU. Aside from re-analyzing nearly all components of the pretraining pipeline for this scenario and providing a modified pipeline with performance close to BERT, we investigate why scaling down is hard, and which modifications actually improve performance in this scenario. We provide evidence that even in this constrained setting, performance closely follows scaling laws observed in large-compute settings. Through the lens of scaling laws, we categorize a range of recent improvements to training and architecture and discuss their merit and practical applicability (or lack thereof) for the limited compute setting.
translated by 谷歌翻译
本文提出了一种新的预先接受训练的语言模型Debertav3,它通过用更换的令牌检测(RTD)更换掩模语言建模(MLM)来改善原始的Deberta模型,更高的预训练任务。我们的分析表明,Vanilla嵌入了电力中的共享损害培训效率和模型性能。这是因为鉴别器的培训损失和发电机的销售损失在不同的方向上拉动令牌嵌入,从而创造“拔河”动态。因此,我们提出了一种新的梯度 - 解开嵌入共享方法,避免了战争动态,提高了训练效率和预训练模型的质量。我们使用与Deberta相同的设置预先接受了培训的Debertav3,以展示其在广泛的下游自然语言理解(NLU)任务上的特殊表现。以八个任务为例,Debertav3大型模型以八个任务为例,平均得分为91.37%,杜伯塔省的1.37%和电力1.91%,在模型中设置新的最先进(SOTA)具有类似的结构。此外,我们预先培训了多语思伯类Mdeberta,与英语模型相比,对强基线的更大改善。例如,Mdeberta基地达到XNLI的79.8%零射频精度和超过XLM-R基础的3.6%的改进,在此基准上创建了一个新的Sota。我们在HTTPS://github.com/microsoft/deberta公开提供我们预先接受的模型和推理码。
translated by 谷歌翻译
Masked language modeling (MLM) pre-training methods such as BERT corrupt the input by replacing some tokens with [MASK] and then train a model to reconstruct the original tokens. While they produce good results when transferred to downstream NLP tasks, they generally require large amounts of compute to be effective. As an alternative, we propose a more sample-efficient pre-training task called replaced token detection. Instead of masking the input, our approach corrupts it by replacing some tokens with plausible alternatives sampled from a small generator network. Then, instead of training a model that predicts the original identities of the corrupted tokens, we train a discriminative model that predicts whether each token in the corrupted input was replaced by a generator sample or not. Thorough experiments demonstrate this new pre-training task is more efficient than MLM because the task is defined over all input tokens rather than just the small subset that was masked out. As a result, the contextual representations learned by our approach substantially outperform the ones learned by BERT given the same model size, data, and compute. The gains are particularly strong for small models; for example, we train a model on one GPU for 4 days that outperforms GPT (trained using 30x more compute) on the GLUE natural language understanding benchmark. Our approach also works well at scale, where it performs comparably to RoBERTa and XLNet while using less than 1/4 of their compute and outperforms them when using the same amount of compute.
translated by 谷歌翻译
手套通过利用来自Word Co-Feationence矩阵的统计信息来学习Word Embeddings。然而,矩阵中的字对对从预定义的本地上下文窗口中提取,这可能导致有限的字对对和潜在的语义无关词对。在本文中,我们提出了Semglove,其中从伯爵蒸馏到静态手套单词嵌入。特别是,我们提出了两种模型来提取基于屏蔽语言模型或伯特的多针注意重量的共发生统计。我们的方法可以在不受本地窗口假设的情况下提取字对对,并且可以通过直接考虑词对之间的语义距离来定义共发生权重。几个单词相似性数据集和四个外部任务的实验表明semglove可以优于手套。
translated by 谷歌翻译
编码单词语义属性的密集词向量或“Word Embeddings”现在已成为机器翻译(MT),问题应答(QA),字感消解(WSD)和信息检索(IR)中的NLP任务的积分。在本文中,我们使用各种现有方法为14个印度语言创建多个单词嵌入。我们将这些嵌入的嵌入式为所有这些语言,萨姆萨姆,孟加拉,古吉拉蒂,印地教派,kannada,konkani,malayalam,marathi,尼泊尔,odiya,punjabi,梵语,泰米尔和泰雅古士在一个单一的存储库中。相对较新的方法,强调迎合上下文(BERT,ELMO等),表明了显着的改进,但需要大量资源来产生可用模型。我们释放使用上下文和非上下文方法生成的预训练嵌入。我们还使用Muse和XLM来培训所有上述语言的交叉语言嵌入。为了展示我们嵌入的效果,我们为所有这些语言评估了我们对XPOS,UPOS和NER任务的嵌入模型。我们使用8种不同的方法释放了436个型号。我们希望他们对资源受限的印度语言NLP有用。本文的标题是指最初在1924年出版的福斯特的着名小说“一段是印度”。
translated by 谷歌翻译
跨语言嵌入(CLWE)已被证明在许多跨语性任务中有用。但是,大多数现有的学习Clwe的方法,包括具有上下文嵌入的方法是无知的。在这项工作中,我们提出了一个新颖的框架,以通过仅利用双语词典的跨语性信号来使上下文嵌入在感觉层面上。我们通过首先提出一种新颖的感知感知的跨熵损失来明确地提出一种新颖的感知跨熵损失来实现我们的框架。通过感知感知的跨熵损失预算的单语Elmo和BERT模型显示出对单词感官歧义任务的显着改善。然后,我们提出了一个感官对齐目标,除了跨语义模型预训练的感知感知跨熵损失以及几种语言对的跨语义模型(英语对德语/西班牙语/日本/中文)。与最佳的基线结果相比,我们的跨语言模型分别在零摄影,情感分类和XNLI任务上达到0.52%,2.09%和1.29%的平均绩效提高。
translated by 谷歌翻译
特定于语言的预训练模型已被证明比单语说在单语法评估设置中更准确,阿拉伯语也不例外。但是,我们发现先前发布的阿拉伯伯特模型显着培训。在这本技术报告中,我们展示了Jaber,Junior Arabic Bert,我们的预用语言模型原型专用于阿拉伯语。我们进行实证研究,以系统地评估模型在各种现有阿拉伯语NLU任务中的性能。实验结果表明,Jaber实现了Alue的最先进的表演,这是阿拉伯语了解评估的新基准,以及成熟的内部基准
translated by 谷歌翻译
Transformer language models (TLMs) are critical for most NLP tasks, but they are difficult to create for low-resource languages because of how much pretraining data they require. In this work, we investigate two techniques for training monolingual TLMs in a low-resource setting: greatly reducing TLM size, and complementing the masked language modeling objective with two linguistically rich supervised tasks (part-of-speech tagging and dependency parsing). Results from 7 diverse languages indicate that our model, MicroBERT, is able to produce marked improvements in downstream task evaluations relative to a typical monolingual TLM pretraining approach. Specifically, we find that monolingual MicroBERT models achieve gains of up to 18% for parser LAS and 11% for NER F1 compared to a multilingual baseline, mBERT, while having less than 1% of its parameter count. We conclude reducing TLM parameter count and using labeled data for pretraining low-resource TLMs can yield large quality benefits and in some cases produce models that outperform multilingual approaches.
translated by 谷歌翻译
我们介绍了第一个用于濒危Erzya语言与俄语以及我们为训练和评估它收集的数据集的神经机器翻译系统。BLEU分别分别为Erzya和Russian的BLEU分数分别为17和19,其中一半以上的翻译被以母语为母语的人可以接受。我们还调整了模型以在Erzya和其他10种语言之间转换,但是如果没有其他并行数据,这些方向上的质量仍然很低。我们将翻译模型与收集的文本语料库一起发布,新的语言标识模型以及适合Erzya语言的多语言句子编码器。这些资源将在https://github.com/slone-nlp/myv-nmt上找到。
translated by 谷歌翻译
Contextualized representation models such as ELMo (Peters et al., 2018a) and BERT (Devlin et al., 2018) have recently achieved state-of-the-art results on a diverse array of downstream NLP tasks. Building on recent token-level probing work, we introduce a novel edge probing task design and construct a broad suite of sub-sentence tasks derived from the traditional structured NLP pipeline. We probe word-level contextual representations from four recent models and investigate how they encode sentence structure across a range of syntactic, semantic, local, and long-range phenomena. We find that existing models trained on language modeling and translation produce strong representations for syntactic phenomena, but only offer comparably small improvements on semantic tasks over a non-contextual baseline.
translated by 谷歌翻译
在NLP社区中有一个正在进行的辩论,无论现代语言模型是否包含语言知识,通过所谓的探针恢复。在本文中,我们研究了语言知识是否是现代语言模型良好表现的必要条件,我们称之为\ Texit {重新发现假设}。首先,我们展示了语言模型,这是显着压缩的,但在预先磨普目标上表现良好,以便在语言结构探讨时保持良好的分数。这一结果支持重新发现的假设,并导致我们的论文的第二款贡献:一个信息 - 理论框架,与语言建模目标相关。该框架还提供了测量语言信息对字词预测任务的影响的度量标准。我们通过英语综合和真正的NLP任务加固我们的分析结果。
translated by 谷歌翻译
差异化(DP)学习在建立大型文本模型方面的成功有限,并尝试直接将差异化私有随机梯度下降(DP-SGD)应用于NLP任务,从而导致了大量的性能下降和高度计算的开销。我们表明,通过(1)使用大型验证模型可以缓解这种性能下降; (2)适合DP优化的超参数; (3)与训练过程对齐的微调目标。通过正确设定这些因素,我们将获得私人NLP模型,以优于最先进的私人培训方法和强大的非私人基准 - 通过直接对中等大小的Corpora进行DP优化的预审计模型。为了解决使用大型变压器运行DP-SGD的计算挑战,我们提出了一种存储器保存技术,该技术允许DP-SGD中的剪辑在不实例化模型中任何层的每个示例梯度的情况下运行。该技术使私人训练变压器的内存成本几乎与非私人培训相同,并以适度的运行时间开销。与传统的观点相反,即DP优化在学习高维模型(由于尺寸缩放的噪声)方面失败的经验结果表明,使用预审预周化模型的私人学习往往不会遭受维度依赖性性能降低的障碍。
translated by 谷歌翻译
虽然最近关于多语种语言模型的工作已经证明了他们对下游任务的交叉零射击传输的能力,但社区缺乏符合语言之间的共享属性,可以实现这种转移。涉及成对的自然语言的分析通常是不确定的,并且矛盾以来,许多语言方面同时不同。在本文中,我们进行大规模的实证研究,通过测量四种不同的自然语言和通过修改脚本,单词顺序和语法等方面构造的零拍摄传递来隔离各种语言特性的影响。在其他事情之外,我们的实验表明,当语言的单词顺序不同时,缺乏子字重叠显着影响零拍摄传输,并且在语言之间的传输性能和Word嵌入对准之间存在强烈相关性(例如,r = 0.94关于NLI的任务)。我们的结果呼吁专注于在明确改进语言之间的嵌入对齐而不是依赖于隐含的出现。
translated by 谷歌翻译
自Mikolov等人的开创性工作以来。 (2013A)和Bojanowski等。 (2017),浅日志双线性语言模型的单词表示已成为许多NLP应用程序。 Mikolov等人。 (2018)介绍了一个位置日志双线性语言模型,具有基于关注的语言模型的特征,并且在内在单词类比任务上达到了最先进的性能。然而,位置模型从未评估了定性标准或外在任务,其速度是不切实际的。我们概述了注意机制与位置模型之间的相似性,并提出了一个受约束的位置模型,它适应Dai等人的稀疏注意机制。 (2018)。我们评估了三个新型定性标准的位置和受约束的位置模型及其对两种和布鲁森的外在语言建模任务(2014)。我们表明,位置和约束位置模型包含有关字令的可解释信息,优于Bojanowski等人的子字模型。 (2017)语言建模。我们还表明,受约束的位置模型优于语言建模的位置模型,并且是快速的两倍。
translated by 谷歌翻译