在本文中,我们提出了一种学习内部特征表示模型的新方法,该模型是\ Textit {兼容}与先前学识的。兼容功能可用于直接比较旧和新的学习功能,允许它们随时间互换使用。这消除了在顺序升级表示模型时,可以对视觉搜索系统提取用于在画廊集中的所有先前看到的图像的新功能。在非常大的画廊集和/或实时系统(即面部识别系统,社交网络,终身系统,终身系统,机器人和监测系统)的情况下,提取新功能通常是非常昂贵或不可行的。我们的方法是通过实质性(核心)称为兼容表示,通过鼓励自身定义到学习的表示模型来实现兼容性,而无需依赖以前学习的模型。实用性允许功能在随时间偏移下不改变的统计属性,以便当前学习的功能与旧版本相互操作。我们评估了种植大规模训练数据集中的单一和连续的多模型升级,我们表明我们的方法通过大幅度实现了实现兼容特征来提高现有技术。特别是,通过从Casia-Webface培训和在野外(LFW)中的标记面上评估的培训数据升级十次,我们获得了49 \%的测量倍数达到兼容的平均次数,这是544 \%对先前最先进的相对改善。
translated by 谷歌翻译
Although deep learning approaches have stood out in recent years due to their state-of-the-art results, they continue to suffer from catastrophic forgetting, a dramatic decrease in overall performance when training with new classes added incrementally. This is due to current neural network architectures requiring the entire dataset, consisting of all the samples from the old as well as the new classes, to update the model-a requirement that becomes easily unsustainable as the number of classes grows. We address this issue with our approach to learn deep neural networks incrementally, using new data and only a small exemplar set corresponding to samples from the old classes. This is based on a loss composed of a distillation measure to retain the knowledge acquired from the old classes, and a cross-entropy loss to learn the new classes. Our incremental training is achieved while keeping the entire framework end-to-end, i.e., learning the data representation and the classifier jointly, unlike recent methods with no such guarantees. We evaluate our method extensively on the CIFAR-100 and Im-ageNet (ILSVRC 2012) image classification datasets, and show state-of-the-art performance.
translated by 谷歌翻译
在本文中,我们为连续表示学习问题提出了一种新颖的培训程序,其中依次学习了神经网络模型,以减轻视觉搜索任务中的灾难性遗忘。我们的方法称为对比度有监督的蒸馏(CSD),在学习判别特征的同时,还会减少忘记。这是通过在蒸馏设置中利用标签信息来实现的,在蒸馏设置中,从教师模型中对学生模型进行了相反的学习。广泛的实验表明,CSD在减轻灾难性遗忘方面的表现优于当前最新方法。我们的结果还提供了进一步的证据,表明在视觉检索任务中评估的功能忘记不像分类任务那样灾难性。代码:https://github.com/niccobiondi/contrastivesupervisedistillation。
translated by 谷歌翻译
Continual Learning (CL) is a field dedicated to devise algorithms able to achieve lifelong learning. Overcoming the knowledge disruption of previously acquired concepts, a drawback affecting deep learning models and that goes by the name of catastrophic forgetting, is a hard challenge. Currently, deep learning methods can attain impressive results when the data modeled does not undergo a considerable distributional shift in subsequent learning sessions, but whenever we expose such systems to this incremental setting, performance drop very quickly. Overcoming this limitation is fundamental as it would allow us to build truly intelligent systems showing stability and plasticity. Secondly, it would allow us to overcome the onerous limitation of retraining these architectures from scratch with the new updated data. In this thesis, we tackle the problem from multiple directions. In a first study, we show that in rehearsal-based techniques (systems that use memory buffer), the quantity of data stored in the rehearsal buffer is a more important factor over the quality of the data. Secondly, we propose one of the early works of incremental learning on ViTs architectures, comparing functional, weight and attention regularization approaches and propose effective novel a novel asymmetric loss. At the end we conclude with a study on pretraining and how it affects the performance in Continual Learning, raising some questions about the effective progression of the field. We then conclude with some future directions and closing remarks.
translated by 谷歌翻译
A major open problem on the road to artificial intelligence is the development of incrementally learning systems that learn about more and more concepts over time from a stream of data. In this work, we introduce a new training strategy, iCaRL, that allows learning in such a classincremental way: only the training data for a small number of classes has to be present at the same time and new classes can be added progressively.iCaRL learns strong classifiers and a data representation simultaneously. This distinguishes it from earlier works that were fundamentally limited to fixed data representations and therefore incompatible with deep learning architectures. We show by experiments on CIFAR-100 and ImageNet ILSVRC 2012 data that iCaRL can learn many classes incrementally over a long period of time where other strategies quickly fail.
translated by 谷歌翻译
人类智慧的主食是以不断的方式获取知识的能力。在Stark对比度下,深网络忘记灾难性,而且为此原因,类增量连续学习促进方法的子字段逐步学习一系列任务,将顺序获得的知识混合成综合预测。这项工作旨在评估和克服我们以前提案黑暗体验重播(Der)的陷阱,这是一种简单有效的方法,将排练和知识蒸馏结合在一起。灵感来自于我们的思想不断重写过去的回忆和对未来的期望,我们赋予了我的能力,即我的能力来修改其重播记忆,以欢迎有关过去数据II的新信息II)为学习尚未公开的课程铺平了道路。我们表明,这些策略的应用导致了显着的改进;实际上,得到的方法 - 被称为扩展-DAR(X-DER) - 优于标准基准(如CiFar-100和MiniimAgeNet)的技术状态,并且这里引入了一个新颖的。为了更好地了解,我们进一步提供了广泛的消融研究,以证实并扩展了我们以前研究的结果(例如,在持续学习设置中知识蒸馏和漂流最小值的价值)。
translated by 谷歌翻译
Despite significant advances, the performance of state-of-the-art continual learning approaches hinges on the unrealistic scenario of fully labeled data. In this paper, we tackle this challenge and propose an approach for continual semi-supervised learning -- a setting where not all the data samples are labeled. An underlying issue in this scenario is the model forgetting representations of unlabeled data and overfitting the labeled ones. We leverage the power of nearest-neighbor classifiers to non-linearly partition the feature space and learn a strong representation for the current task, as well as distill relevant information from previous tasks. We perform a thorough experimental evaluation and show that our method outperforms all the existing approaches by large margins, setting a strong state of the art on the continual semi-supervised learning paradigm. For example, on CIFAR100 we surpass several others even when using at least 30 times less supervision (0.8% vs. 25% of annotations).
translated by 谷歌翻译
Lifelong learning has attracted much attention, but existing works still struggle to fight catastrophic forgetting and accumulate knowledge over long stretches of incremental learning. In this work, we propose PODNet, a model inspired by representation learning. By carefully balancing the compromise between remembering the old classes and learning new ones, PODNet fights catastrophic forgetting, even over very long runs of small incremental tasks -a setting so far unexplored by current works. PODNet innovates on existing art with an efficient spatialbased distillation-loss applied throughout the model and a representation comprising multiple proxy vectors for each class. We validate those innovations thoroughly, comparing PODNet with three state-of-the-art models on three datasets: CIFAR100, ImageNet100, and ImageNet1000. Our results showcase a significant advantage of PODNet over existing art, with accuracy gains of 12.10, 6.51, and 2.85 percentage points, respectively. 5
translated by 谷歌翻译
Image classification with small datasets has been an active research area in the recent past. However, as research in this scope is still in its infancy, two key ingredients are missing for ensuring reliable and truthful progress: a systematic and extensive overview of the state of the art, and a common benchmark to allow for objective comparisons between published methods. This article addresses both issues. First, we systematically organize and connect past studies to consolidate a community that is currently fragmented and scattered. Second, we propose a common benchmark that allows for an objective comparison of approaches. It consists of five datasets spanning various domains (e.g., natural images, medical imagery, satellite data) and data types (RGB, grayscale, multispectral). We use this benchmark to re-evaluate the standard cross-entropy baseline and ten existing methods published between 2017 and 2021 at renowned venues. Surprisingly, we find that thorough hyper-parameter tuning on held-out validation data results in a highly competitive baseline and highlights a stunted growth of performance over the years. Indeed, only a single specialized method dating back to 2019 clearly wins our benchmark and outperforms the baseline classifier.
translated by 谷歌翻译
在视觉检索系统中,更新嵌入式模型需要每条数据的重新计算功能。该昂贵的过程称为回填。最近,提出了向后兼容培训(BCT)的想法。为避免回填的成本,BCT修改了对新模型的培训,使其与旧模型兼容的表示。但是,BCT可以显着地阻碍新模型的性能。在这项工作中,我们提出了一种新的学习范例来代表学习:前进兼容培训(FCT)。在FCT中,当旧型号接受培训时,我们还为未来的未知版本做好准备。我们提出学习侧信息,每个样本的辅助功能,促进了模型的未来更新。为了开发一个强大而灵活的模型兼容框架,我们将侧面信息与旧嵌入到新嵌入的前向转换相结合。新模型的培训没有修改,因此,其准确性不会降低。与各种数据集的BCT相比,我们展示了显着的检索准确性改进:Imagenet-1K(+ 18.1%),Place-365(+ 5.4%)和VGG-Face2(+ 8.3%)。 FCT在不同数据集,损失和架构培训时获得模型兼容性。
translated by 谷歌翻译
当随着时间的推移学习任务时,人工神经网络遭受称为灾难性遗忘(CF)的问题。当在训练网络的训练过程中覆盖网络的权重,导致忘记旧信息的新任务时,会发生这种情况。为了解决这个问题,我们提出了META可重复使用的知识或标记,这是一种新的方法,可以在学习新任务时促进重量可重用性而不是覆盖。具体来说,标记在任务之间保留一组共享权重。我们将这些共享权重设定为共同的知识库(KB),不仅用于学习新任务,而且还富有以丰富的新知识,因为模型了解新任务。标记背后的关键组件是两倍。一方面,冶金学习方法提供了逐步丰富KB的关键机制,并在任务之间促进重量可重用性。另一方面,一组培训掩模提供了选择性地从KB相关权重中选择的关键机制来解决每个任务。通过使用Mark,我们实现了最普遍的基准,在几个流行的基准中实现了最新的基准,在20分拆性MiniimAgenet数据集上超过了平均精度的最佳性能方法,同时使用55%的数量来实现几乎零遗忘参数。此外,消融研究提供了证据,实际上,标记正在学习每个任务选择性地使用的可重复使用的知识。
translated by 谷歌翻译
当自我监督的模型已经显示出比在规模上未标记的数据训练的情况下的监督对方的可比视觉表现。然而,它们的功效在持续的学习(CL)场景中灾难性地减少,其中数据被顺序地向模型呈现给模型。在本文中,我们表明,通过添加将表示的当前状态映射到其过去状态,可以通过添加预测的网络来无缝地转换为CL的蒸馏机制。这使我们能够制定一个持续自我监督的视觉表示的框架,学习(i)显着提高了学习象征的质量,(ii)与若干最先进的自我监督目标兼容(III)几乎没有近似参数调整。我们通过在各种CL设置中培训六种受欢迎的自我监督模型来证明我们的方法的有效性。
translated by 谷歌翻译
深度神经网络在学习新任务时遭受灾难性遗忘的主要限制。在本文中,我们专注于语义细分中的课堂持续学习,其中新类别随着时间的推移,而在未保留以前的训练数据。建议的持续学习方案塑造了潜在的空间来减少遗忘,同时提高了对新型课程的识别。我们的框架是由三种新的组件驱动,我们还毫不费力地结合现有的技术。首先,匹配的原型匹配在旧类上强制执行潜在空间一致性,约束编码器在后续步骤中为先前看到的类生成类似的潜在潜在表示。其次,特征稀疏性允许在潜在空间中腾出空间以容纳新型课程。最后,根据他们的语义,在统一的同时撕裂不同类别的语义,对形成对比的学习。对Pascal VOC2012和ADE20K数据集的广泛评估展示了我们方法的有效性,显着优于最先进的方法。
translated by 谷歌翻译
我们提出了一个统一的查看,即通过通用表示,一个深层神经网络共同学习多个视觉任务和视觉域。同时学习多个问题涉及最大程度地减少具有不同幅度和特征的多个损失函数的加权总和,从而导致一个损失的不平衡状态,与学习每个问题的单独模型相比,一个损失的不平衡状态主导了优化和差的结果。为此,我们提出了通过小容量适配器将多个任务/特定于域网络的知识提炼到单个深神经网络中的知识。我们严格地表明,通用表示在学习NYU-V2和CityScapes中多个密集的预测问题方面实现了最新的表现,来自视觉Decathlon数据集中的不同域中的多个图像分类问题以及MetadataSet中的跨域中的几个域中学习。最后,我们还通过消融和定性研究进行多次分析。
translated by 谷歌翻译
开放式识别使深度神经网络(DNN)能够识别未知类别的样本,同时在已知类别的样本上保持高分类精度。基于自动编码器(AE)和原型学习的现有方法在处理这项具有挑战性的任务方面具有巨大的潜力。在这项研究中,我们提出了一种新的方法,称为类别特定的语义重建(CSSR),该方法整合了AE和原型学习的力量。具体而言,CSSR用特定于类的AE表示的歧管替代了原型点。与传统的基于原型的方法不同,CSSR在单个AE歧管上的每个已知类模型,并通过AE的重建误差来测量类归属感。特定于类的AE被插入DNN主链的顶部,并重建DNN而不是原始图像所学的语义表示。通过端到端的学习,DNN和AES互相促进,以学习歧视性和代表性信息。在多个数据集上进行的实验结果表明,所提出的方法在封闭式和开放式识别中都达到了出色的性能,并且非常简单且灵活地将其纳入现有框架中。
translated by 谷歌翻译
持续的学习是遭受灾难性的遗忘,这是一个早期学识渊博的概念被遗忘的现象,以牺牲更新的样本。在这项工作中,我们挑战持续学习不可避免地与灾难性忘记相关的假设,通过展示一系列令人惊讶的是在不断学习时令人惊讶地没有灾难性的遗忘遗忘。我们提供了证据表明,这些重建类型任务表现出正向转移,并且单视网型重建随着时间的推移提高了学习和新型类别的性能。通过查看顺序学习任务的产出分配转移,我们提供了对知识转移能力的新颖分析。最后,我们表明这些任务的稳健性导致具有用于连续分类的代理代表学习任务的可能性。可以在https://github.com/rehg-lab/lrorec中找到与本文发布的CodeBase,DataSet和预训练模型。
translated by 谷歌翻译
机器学习模型通常会遇到与训练分布不同的样本。无法识别分布(OOD)样本,因此将该样本分配给课堂标签会显着损害模​​型的可靠性。由于其对在开放世界中的安全部署模型的重要性,该问题引起了重大关注。由于对所有可能的未知分布进行建模的棘手性,检测OOD样品是具有挑战性的。迄今为止,一些研究领域解决了检测陌生样本的问题,包括异常检测,新颖性检测,一级学习,开放式识别识别和分布外检测。尽管有相似和共同的概念,但分别分布,开放式检测和异常检测已被独立研究。因此,这些研究途径尚未交叉授粉,创造了研究障碍。尽管某些调查打算概述这些方法,但它们似乎仅关注特定领域,而无需检查不同领域之间的关系。这项调查旨在在确定其共同点的同时,对各个领域的众多著名作品进行跨域和全面的审查。研究人员可以从不同领域的研究进展概述中受益,并协同发展未来的方法。此外,据我们所知,虽然进行异常检测或单级学习进行了调查,但没有关于分布外检测的全面或最新的调查,我们的调查可广泛涵盖。最后,有了统一的跨域视角,我们讨论并阐明了未来的研究线,打算将这些领域更加紧密地融为一体。
translated by 谷歌翻译
班级增量学习(CIL)吸引了很多关注,但是大多数现有相关的作品都集中在微调整个表示模型上,这不可避免地导致了许多灾难性的遗忘。相比之下,使用语义丰富的预训练的表示模型,参数 - 辅助调整(PAT)仅更改很少的参数来学习新的视觉概念。最近的研究证明,基于PAT的CIL自然可以避免像大多数现有方法一样通过重播或蒸馏而战斗。但是,我们发现基于PAT的CIL仍然面临严重的语义漂移,这是由分类器学习偏见在不同学习阶段引起的问题,这大大降低了基于PAT的CIL的性能。为了解决这个问题,我们提出了增量原型调整(IPT),这是一种简单但有效的方法,它调整了分类和学习示例原型的类别原型,以补偿语义漂移。广泛的实验表明,我们的方法可以有效地补偿语义漂移。与经过良好训练的VIT骨架和其他PAT方法相结合,IPT超过了主流学习基准的最新基准。
translated by 谷歌翻译
本文认为增量少量学习,这需要一个模型,不断识别新类别,只有一些例子。我们的研究表明,现有方法严重遭受灾难性的遗忘,是一个增量学习中的一个众所周知的问题,这是由于少量拍摄设置中的数据稀缺和不平衡而加剧。我们的分析进一步表明,为了防止灾难性的遗忘,需要在原始阶段采取行动 - 基础类别的培训而不是稍后的几秒钟学习会议。因此,我们建议寻找基本训练目标函数的扁平本地最小值,然后在新任务中微调平面区域内的模型参数。通过这种方式,模型可以在保留旧的时有效地学习新类。综合实验结果表明,我们的方法优于所有现有最先进的方法,并且非常接近近似上限。源代码可在https://github.com/moukamisama/f2m上获得。
translated by 谷歌翻译
Neural networks are prone to catastrophic forgetting when trained incrementally on different tasks. Popular incremental learning methods mitigate such forgetting by retaining a subset of previously seen samples and replaying them during the training on subsequent tasks. However, this is not always possible, e.g., due to data protection regulations. In such restricted scenarios, one can employ generative models to replay either artificial images or hidden features to a classifier. In this work, we propose Genifer (GENeratIve FEature-driven image Replay), where a generative model is trained to replay images that must induce the same hidden features as real samples when they are passed through the classifier. Our technique therefore incorporates the benefits of both image and feature replay, i.e.: (1) unlike conventional image replay, our generative model explicitly learns the distribution of features that are relevant for classification; (2) in contrast to feature replay, our entire classifier remains trainable; and (3) we can leverage image-space augmentations, which increase distillation performance while also mitigating overfitting during the training of the generative model. We show that Genifer substantially outperforms the previous state of the art for various settings on the CIFAR-100 and CUB-200 datasets.
translated by 谷歌翻译