In this paper, we carry out numerical analysis to prove convergence of a novel sample-wise back-propagation method for training a class of stochastic neural networks (SNNs). The structure of the SNN is formulated as discretization of a stochastic differential equation (SDE). A stochastic optimal control framework is introduced to model the training procedure, and a sample-wise approximation scheme for the adjoint backward SDE is applied to improve the efficiency of the stochastic optimal control solver, which is equivalent to the back-propagation for training the SNN. The convergence analysis is derived with and without convexity assumption for optimization of the SNN parameters. Especially, our analysis indicates that the number of SNN training steps should be proportional to the square of the number of layers in the convex optimization case. Numerical experiments are carried out to validate the analysis results, and the performance of the sample-wise back-propagation method for training SNNs is examined by benchmark machine learning examples.
translated by 谷歌翻译
在本文中,我们提出了一种基于深度学习的数值方案,用于强烈耦合FBSDE,这是由随机控制引起的。这是对深度BSDE方法的修改,其中向后方程的初始值不是一个免费参数,并且新的损失函数是控制问题的成本的加权总和,而差异项与与该的差异相吻合终端条件下的平均误差。我们通过一个数值示例表明,经典深度BSDE方法的直接扩展为FBSDE,失败了简单的线性季度控制问题,并激励新方法为何工作。在定期和有限性的假设上,对时间连续和时间离散控制问题的确切控制,我们为我们的方法提供了错误分析。我们从经验上表明,该方法收敛于三个不同的问题,一个方法是直接扩展Deep BSDE方法的问题。
translated by 谷歌翻译
平均场控制和平均场游戏中的核心问题之一是解决相应的McKean-Vlasov前向后随机微分方程(MV-FBSDES)。大多数现有方法是针对特殊情况量身定制的,在这种情况下,平均场相互作用仅取决于期望或其他时刻,因此当平均场相互作用具有完全分布依赖性时,无法解决问题。在本文中,我们提出了一种新颖的深度学习方法,用于计算具有均值场相互作用的一般形式的MV-FBSDE。具体而言,我们基于虚拟游戏,我们将问题重新验证为重复求解具有明确系数功能的标准FBSDE。这些系数功能用于近似具有完全分布依赖性的MV-FBSDE的模型系数,并通过使用从上次迭代的FBSDE解决方案模拟的培训数据来解决另一个监督学习问题。我们使用深层神经网络来求解标准的BSDE和近似系数功能,以求解高维MV-FBSDE。在对学习功能的适当假设下,我们证明了所提出的方法的收敛性通过使用先前在[HAN,HU和LONG,ARXIV:2104.12036]中开发的一类积分概率指标来免受维数(COD)的诅咒。证明的定理在高维度中显示了该方法的优势。我们介绍了高维MV-FBSDE问题中的数值性能,其中包括众所周知的Cucker-Smale模型的平均场景示例,其成本取决于正向过程的完整分布。
translated by 谷歌翻译
连续数据的优化问题出现在,例如强大的机器学习,功能数据分析和变分推理。这里,目标函数被给出为一个(连续)索引目标函数的系列 - 相对于概率测量集成的族聚集。这些问题通常可以通过随机优化方法解决:在随机切换指标执行关于索引目标函数的优化步骤。在这项工作中,我们研究了随机梯度下降算法的连续时间变量,以进行连续数据的优化问题。该所谓的随机梯度过程包括最小化耦合与确定索引的连续时间索引过程的索引目标函数的梯度流程。索引过程是例如,反射扩散,纯跳跃过程或紧凑空间上的其他L evy过程。因此,我们研究了用于连续数据空间的多种采样模式,并允许在算法的运行时进行模拟或流式流的数据。我们分析了随机梯度过程的近似性质,并在恒定下进行了长时间行为和遍历的学习率。我们以噪声功能数据的多项式回归问题以及物理知识的神经网络在多项式回归问题中结束了随机梯度过程的适用性。
translated by 谷歌翻译
在当前文献中,随机梯度下降(SGD)的扩散近似仅在有限的时间间隔内有效。在本文中,我们仅假设预期损失是强烈的凸和其他轻度条件,建立了SGD的均匀扩散近似值,而无需假设每个随机损耗函数的凸度。主要技术是建立向后kolmogorov方程的溶液衍生物的指数衰减速率。均匀的近似近似使我们能够通过连续的随机微分方程(SDE)研究SGD的渐近行为,即使随机目标函数$ f(\ cdot; \ xi)$不是强烈的凸。
translated by 谷歌翻译
计算科学和统计推断中的许多应用都需要计算有关具有未知归一化常数的复杂高维分布以及这些常数的估计。在这里,我们开发了一种基于从简单的基本分布生成样品,沿着速度场生成的流量运输的方法,并沿这些流程线执行平均值。这种非平衡重要性采样(NEIS)策略是直接实施的,可用于具有任意目标分布的计算。在理论方面,我们讨论了如何将速度场定制到目标,并建立所提出的估计器是一个完美的估计器,具有零变化。我们还通过将基本分布映射到目标上,通过传输图绘制了NEIS和方法之间的连接。在计算方面,我们展示了如何使用深度学习来代表神经网络,并将其训练为零方差最佳。这些结果在高维示例上进行了数值说明,我们表明训练速度场可以将NEIS估计量的方差降低至6个数量级,而不是Vanilla估计量。我们还表明,NEIS在这些示例上的表现要比NEAL的退火重要性采样(AIS)更好。
translated by 谷歌翻译
在广泛的应用程序中,从观察到的数据中识别隐藏的动态是一项重大且具有挑战性的任务。最近,线性多步法方法(LMM)和深度学习的结合已成功地用于发现动力学,而对这种方法进行完整的收敛分析仍在开发中。在这项工作中,我们考虑了基于网络的深度LMM,以发现动态。我们使用深网的近似属性提出了这些方法的错误估计。它指出,对于某些LMMS的家庭,$ \ ell^2 $网格错误由$ O(H^p)$的总和和网络近似错误,其中$ h $是时间步长和$P $是本地截断错误顺序。提供了几个物理相关示例的数值结果,以证明我们的理论。
translated by 谷歌翻译
在本文中,我们主要专注于用边界条件求解高维随机汉密尔顿系统,并从随机对照的角度提出一种新的方法。为了获得哈密顿系统的近似解,我们首先引入了一个相应的随机最佳控制问题,使得汉密尔顿控制问题的系统正是我们需要解决的,然后开发两种不同的算法适合不同的控制问题。深神经网络近似随机控制。从数值结果中,与先前从求解FBSDES开发的深度FBSDE方法相比,新颖的算法会聚得更快,这意味着它们需要更少的训练步骤,并展示不同哈密顿系统的更稳定的收敛。
translated by 谷歌翻译
We propose in this work the gradient-enhanced deep neural networks (DNNs) approach for function approximations and uncertainty quantification. More precisely, the proposed approach adopts both the function evaluations and the associated gradient information to yield enhanced approximation accuracy. In particular, the gradient information is included as a regularization term in the gradient-enhanced DNNs approach, for which we present similar posterior estimates (by the two-layer neural networks) as those in the path-norm regularized DNNs approximations. We also discuss the application of this approach to gradient-enhanced uncertainty quantification, and present several numerical experiments to show that the proposed approach can outperform the traditional DNNs approach in many cases of interests.
translated by 谷歌翻译
High-dimensional PDEs have been a longstanding computational challenge. We propose to solve highdimensional PDEs by approximating the solution with a deep neural network which is trained to satisfy the differential operator, initial condition, and boundary conditions. Our algorithm is meshfree, which is key since meshes become infeasible in higher dimensions. Instead of forming a mesh, the neural network is trained on batches of randomly sampled time and space points. The algorithm is tested on a class of high-dimensional free boundary PDEs, which we are able to accurately solve in up to 200 dimensions. The algorithm is also tested on a high-dimensional Hamilton-Jacobi-Bellman PDE and Burgers' equation. The deep learning algorithm approximates the general solution to the Burgers' equation for a continuum of different boundary conditions and physical conditions (which can be viewed as a high-dimensional space). We call the algorithm a "Deep Galerkin Method (DGM)" since it is similar in spirit to Galerkin methods, with the solution approximated by a neural network instead of a linear combination of basis functions. In addition, we prove a theorem regarding the approximation power of neural networks for a class of quasilinear parabolic PDEs.
translated by 谷歌翻译
Despite its popularity in the reinforcement learning community, a provably convergent policy gradient method for continuous space-time control problems with nonlinear state dynamics has been elusive. This paper proposes proximal gradient algorithms for feedback controls of finite-time horizon stochastic control problems. The state dynamics are nonlinear diffusions with control-affine drift, and the cost functions are nonconvex in the state and nonsmooth in the control. The system noise can degenerate, which allows for deterministic control problems as special cases. We prove under suitable conditions that the algorithm converges linearly to a stationary point of the control problem, and is stable with respect to policy updates by approximate gradient steps. The convergence result justifies the recent reinforcement learning heuristics that adding entropy regularization or a fictitious discount factor to the optimization objective accelerates the convergence of policy gradient methods. The proof exploits careful regularity estimates of backward stochastic differential equations.
translated by 谷歌翻译
我们因与Relu神经网络的参数双曲标量保护定律的近似值所产生的误差得出了严格的界限。我们表明,通过克服维度诅咒的relu神经网络,可以使近似误差尽可能小。此外,我们在训练误差,训练样本数量和神经网络大小方面提供了明确的上限。理论结果通过数值实验说明。
translated by 谷歌翻译
在本文中,我们研究了针对泊松方程的解决方案的概率和神经网络近似,但在$ \ mathbb {r}^d $的一般边界域中,较旧或$ c^2 $数据。我们的目标是两个基本目标。首先,也是最重要的是,我们证明了泊松方程的解决方案可以通过蒙特卡洛方法在sup-norm中进行数值近似,但基于球形算法的步行略有变化。这提供了相对于相对于相对于相对于有效的估计值规定的近似误差且没有维度的诅咒。此外,样品的总数不取决于执行近似的点。作为第二个目标,我们表明获得的蒙特卡洛求解器renders relu relu深层神经网络(DNN)解决泊松问题的解决方案,其大小在尺寸$ d $以及所需的错误中大多数取决于多项式。和低多项式复杂性。
translated by 谷歌翻译
变性推理(VI)为基于传统的采样方法提供了一种吸引人的替代方法,用于实施贝叶斯推断,因为其概念性的简单性,统计准确性和计算可扩展性。然而,常见的变分近似方案(例如平均场(MF)近似)需要某些共轭结构以促进有效的计算,这可能会增加不必要的限制对可行的先验分布家族,并对变异近似族对差异进行进一步的限制。在这项工作中,我们开发了一个通用计算框架,用于实施MF-VI VIA WASSERSTEIN梯度流(WGF),这是概率度量空间上的梯度流。当专门针对贝叶斯潜在变量模型时,我们将分析基于时间消化的WGF交替最小化方案的算法收敛,用于实现MF近似。特别是,所提出的算法类似于EM算法的分布版本,包括更新潜在变量变异分布的E step以及在参数的变异分布上进行最陡峭下降的m step。我们的理论分析依赖于概率度量空间中的最佳运输理论和细分微积分。我们证明了时间限制的WGF的指数收敛性,以最大程度地减少普通大地测量学严格的凸度的通用物镜功能。我们还提供了通过使用时间限制的WGF的固定点方程从MF近似获得的变异分布的指数收缩的新证明。我们将方法和理论应用于两个经典的贝叶斯潜在变量模型,即高斯混合模型和回归模型的混合物。还进行了数值实验,以补充这两个模型下的理论发现。
translated by 谷歌翻译
低维歧管假设认为,在许多应用中发现的数据,例如涉及自然图像的数据(大约)位于嵌入高维欧几里得空间中的低维歧管上。在这种情况下,典型的神经网络定义了一个函数,该函数在嵌入空间中以有限数量的向量作为输入。但是,通常需要考虑在训练分布以外的点上评估优化网络。本文考虑了培训数据以$ \ mathbb r^d $的线性子空间分配的情况。我们得出对由神经网络定义的学习函数变化的估计值,沿横向子空间的方向。我们研究了数据歧管的编纂中与网络的深度和噪声相关的潜在正则化效应。由于存在噪声,我们还提出了训练中的其他副作用。
translated by 谷歌翻译
深度神经网络和其他现代机器学习模型的培训通常包括解决高维且受大规模数据约束的非凸优化问题。在这里,基于动量的随机优化算法在近年来变得尤其流行。随机性来自数据亚采样,从而降低了计算成本。此外,动量和随机性都应该有助于算法克服当地的最小化器,并希望在全球范围内融合。从理论上讲,这种随机性和动量的结合被糟糕地理解。在这项工作中,我们建议并分析具有动量的随机梯度下降的连续时间模型。该模型是一个分段确定的马尔可夫过程,它通过阻尼不足的动态系统和通过动力学系统的随机切换来代表粒子运动。在我们的分析中,我们研究了长期限制,子采样到无填充采样极限以及动量到非摩托车的限制。我们对随着时间的推移降低动量的情况特别感兴趣:直觉上,动量有助于在算法的初始阶段克服局部最小值,但禁止后来快速收敛到全球最小化器。在凸度的假设下,当降低随时间的动量时,我们显示了动力学系统与全局最小化器的收敛性,并让子采样率转移到无穷大。然后,我们提出了一个稳定的,合成的离散方案,以从我们的连续时间动力学系统中构造算法。在数值实验中,我们研究了我们在凸面和非凸测试问题中的离散方案。此外,我们训练卷积神经网络解决CIFAR-10图像分类问题。在这里,与动量相比,我们的算法与随机梯度下降相比达到了竞争性结果。
translated by 谷歌翻译
本文涉及高维度中经验措施的收敛。我们提出了一类新的指标,并表明在这样的指标下,融合不受维度的诅咒(COD)。这样的特征对于高维分析至关重要,并且与经典指标相反({\ it,例如,瓦斯泰尔距离)。所提出的指标源自最大平均差异,我们通过提出选择测试功能空间的特定标准来概括,以确保没有COD的属性。因此,我们将此类别称为广义最大平均差异(GMMD)。所选测试功能空间的示例包括复制的内核希尔伯特空间,巴伦空间和流动诱导的功能空间。提出了所提出的指标的三种应用:1。在随机变量的情况下,经验度量的收敛; 2. $ n $粒子系统的收敛到麦基·维拉索夫随机微分方程的解决方案; 3.构建$ \ varepsilon $ -NASH平衡,用于均质$ n $ - 玩家游戏的平均范围限制。作为副产品,我们证明,考虑到接近GMMD测量的目标分布和目标分布的一定表示,我们可以在Wasserstein距离和相对熵方面生成接近目标的分布。总体而言,我们表明,所提出的指标类是一种强大的工具,可以在没有COD的高维度中分析经验度量的收敛性。
translated by 谷歌翻译
这项调查的目的是介绍对深神经网络的近似特性的解释性回顾。具体而言,我们旨在了解深神经网络如何以及为什么要优于其他经典线性和非线性近似方法。这项调查包括三章。在第1章中,我们回顾了深层网络及其组成非线性结构的关键思想和概念。我们通过在解决回归和分类问题时将其作为优化问题来形式化神经网络问题。我们简要讨论用于解决优化问题的随机梯度下降算法以及用于解决优化问题的后传播公式,并解决了与神经网络性能相关的一些问题,包括选择激活功能,成本功能,过度适应问题和正则化。在第2章中,我们将重点转移到神经网络的近似理论上。我们首先介绍多项式近似中的密度概念,尤其是研究实现连续函数的Stone-WeierStrass定理。然后,在线性近似的框架内,我们回顾了馈电网络的密度和收敛速率的一些经典结果,然后在近似Sobolev函数中进行有关深网络复杂性的最新发展。在第3章中,利用非线性近似理论,我们进一步详细介绍了深度和近似网络与其他经典非线性近似方法相比的近似优势。
translated by 谷歌翻译
本论文主要涉及解决深层(时间)高斯过程(DGP)回归问题的状态空间方法。更具体地,我们代表DGP作为分层组合的随机微分方程(SDES),并且我们通过使用状态空间过滤和平滑方法来解决DGP回归问题。由此产生的状态空间DGP(SS-DGP)模型生成丰富的电视等级,与建模许多不规则信号/功能兼容。此外,由于他们的马尔可道结构,通过使用贝叶斯滤波和平滑方法可以有效地解决SS-DGPS回归问题。本论文的第二次贡献是我们通过使用泰勒力矩膨胀(TME)方法来解决连续离散高斯滤波和平滑问题。这诱导了一类滤波器和SmooThers,其可以渐近地精确地预测随机微分方程(SDES)解决方案的平均值和协方差。此外,TME方法和TME过滤器和SmoOthers兼容模拟SS-DGP并解决其回归问题。最后,本文具有多种状态 - 空间(深)GPS的应用。这些应用主要包括(i)来自部分观察到的轨迹的SDES的未知漂移功能和信号的光谱 - 时间特征估计。
translated by 谷歌翻译
我们提出了一种深层签名/对数符号FBSDE算法,以求解具有状态和路径依赖性特征的前回向随机微分方程(FBSDE)。通过将深度签名/对数签名转换纳入复发性神经网络(RNN)模型,我们的算法缩短了训练时间,提高了准确性,并扩展了与现有文献中方法相比的时间范围。此外,我们的算法可以应用于涉及高频数据,模型歧义和随机游戏等广泛的应用程序和路径依赖的选项定价,这些定价与抛物线偏差方程(PDES)以及路径依赖性依赖性链接有关PDE(PPDE)。最后,我们还得出了深度签名/对数签名FBSDE算法的收敛分析。
translated by 谷歌翻译