近年来,随着深度神经网络的发展,端到端优化的图像压缩已取得了重大进展,并超过了速度延伸性能的经典方法。但是,大多数基于学习的图像压缩方法是未标记的,在优化模型时不考虑图像语义或内容。实际上,人眼对不同内容具有不同的敏感性,因此还需要考虑图像内容。在本文中,我们提出了一种面向内容的图像压缩方法,该方法处理具有不同策略的不同类型的图像内容。广泛的实验表明,与最先进的端到端学习的图像压缩方法或经典方法相比,所提出的方法可实现竞争性的主观结果。
translated by 谷歌翻译
最近,基于深度学习的图像压缩已取得了显着的进步,并且在主观度量和更具挑战性的客观指标中,与最新的传统方法H.266/vvc相比,取得了更好的评分(R-D)性能。但是,一个主要问题是,许多领先的学识渊博的方案无法保持绩效和复杂性之间的良好权衡。在本文中,我们提出了一个效率和有效的图像编码框架,该框架的复杂性比最高的状态具有相似的R-D性能。首先,我们开发了改进的多尺度残差块(MSRB),该块可以扩展容纳长石,并且更容易获得全球信息。它可以进一步捕获和减少潜在表示的空间相关性。其次,引入了更高级的重要性图网络,以自适应地分配位置到图像的不同区域。第三,我们应用2D定量后flter(PQF)来减少视频编码中样本自适应偏移量(SAO)flter的动机。此外,我们认为编码器和解码器的复杂性对图像压缩性能有不同的影响。基于这一观察结果,我们设计了一个不对称范式,其中编码器采用三个阶段的MSRB来提高学习能力,而解码器只需要一个srb的一个阶段就可以产生令人满意的重建,从而在不牺牲性能的情况下降低了解码的复杂性。实验结果表明,与最先进的方法相比,所提出方法的编码和解码时间速度约为17倍,而R-D性能仅在Kodak和Tecnick数据集中降低了1%,而R-D性能仅少于1%。它仍然比H.266/VVC(4:4:4)和其他基于学习的方法更好。我们的源代码可在https://github.com/fengyurenpingsheng上公开获得。
translated by 谷歌翻译
By optimizing the rate-distortion-realism trade-off, generative compression approaches produce detailed, realistic images, even at low bit rates, instead of the blurry reconstructions produced by rate-distortion optimized models. However, previous methods do not explicitly control how much detail is synthesized, which results in a common criticism of these methods: users might be worried that a misleading reconstruction far from the input image is generated. In this work, we alleviate these concerns by training a decoder that can bridge the two regimes and navigate the distortion-realism trade-off. From a single compressed representation, the receiver can decide to either reconstruct a low mean squared error reconstruction that is close to the input, a realistic reconstruction with high perceptual quality, or anything in between. With our method, we set a new state-of-the-art in distortion-realism, pushing the frontier of achievable distortion-realism pairs, i.e., our method achieves better distortions at high realism and better realism at low distortion than ever before.
translated by 谷歌翻译
尽管最近的生成面部先验和几何事物最近证明了盲面修复的高质量结果,但忠实于投入的细粒度细节仍然是一个具有挑战性的问题。由基于经典词典的方法和最近的矢量量化(VQ)技术激励,我们提出了一种基于VQ的面部恢复方法-VQFR。 VQFR利用从高质量面孔中提取的高质量低级特征银行,因此可以帮助恢复现实的面部细节。但是,通过忠实的细节和身份保存,VQ代码簿的简单应用无法取得良好的结果。因此,我们进一步介绍了两个特殊的网络设计。 1)。我们首先研究了VQ代码簿中的压缩补丁大小,并发现使用适当的压缩补丁大小设计的VQ代码簿对于平衡质量和忠诚度至关重要。 2)。为了进一步融合来自输入的低级功能,而不是“污染” VQ代码簿中生成的现实细节,我们提出了一个由纹理解码器和主要解码器组成的并行解码器。然后,这两个解码器与具有变形卷积的纹理翘曲模块进行交互。拟议的VQFR配备了VQ Codebook作为面部细节词典和平行解码器设计,可以在很大程度上提高面部细节的恢复质量,同时保持对先前方法的保真度。
translated by 谷歌翻译
Deep learning techniques have made considerable progress in image inpainting, restoration, and reconstruction in the last few years. Image outpainting, also known as image extrapolation, lacks attention and practical approaches to be fulfilled, owing to difficulties caused by large-scale area loss and less legitimate neighboring information. These difficulties have made outpainted images handled by most of the existing models unrealistic to human eyes and spatially inconsistent. When upsampling through deconvolution to generate fake content, the naive generation methods may lead to results lacking high-frequency details and structural authenticity. Therefore, as our novelties to handle image outpainting problems, we introduce structural prior as a condition to optimize the generation quality and a new semantic embedding term to enhance perceptual sanity. we propose a deep learning method based on Generative Adversarial Network (GAN) and condition edges as structural prior in order to assist the generation. We use a multi-phase adversarial training scheme that comprises edge inference training, contents inpainting training, and joint training. The newly added semantic embedding loss is proved effective in practice.
translated by 谷歌翻译
我们在本文中提出了一个新的面部视频压缩范式。我们利用诸如stylegan之类的gan的生成能力来表示和压缩视频,包括内部和间压缩。每个帧都在StyleGAN的潜在空间中倒置,从中学习了最佳压缩。为此,使用归一化流量模型学习了差异潜在表示,可以在其中优化熵模型以用于图像编码。此外,我们提出了一种新的感知损失,比其他同行更有效。最后,在先前构造的潜在表示中还学习了用于视频间编码的熵模型。我们的方法(SGANC)很简单,训练的速度更快,并且与最新的编解码器(例如VTM,AV1和最近的深度学习技术)相比,为图像和视频编码提供了更好的结果。特别是,它在低比特速率下极大地最大程度地减少了感知失真。
translated by 谷歌翻译
Face Restoration (FR) aims to restore High-Quality (HQ) faces from Low-Quality (LQ) input images, which is a domain-specific image restoration problem in the low-level computer vision area. The early face restoration methods mainly use statistic priors and degradation models, which are difficult to meet the requirements of real-world applications in practice. In recent years, face restoration has witnessed great progress after stepping into the deep learning era. However, there are few works to study deep learning-based face restoration methods systematically. Thus, this paper comprehensively surveys recent advances in deep learning techniques for face restoration. Specifically, we first summarize different problem formulations and analyze the characteristic of the face image. Second, we discuss the challenges of face restoration. Concerning these challenges, we present a comprehensive review of existing FR methods, including prior based methods and deep learning-based methods. Then, we explore developed techniques in the task of FR covering network architectures, loss functions, and benchmark datasets. We also conduct a systematic benchmark evaluation on representative methods. Finally, we discuss future directions, including network designs, metrics, benchmark datasets, applications,etc. We also provide an open-source repository for all the discussed methods, which is available at https://github.com/TaoWangzj/Awesome-Face-Restoration.
translated by 谷歌翻译
可扩展的编码,可以适应通道带宽变化,在当今复杂的网络环境中表现良好。然而,现有的可扩展压缩方法面临两个挑战:降低压缩性能和可扩展性不足。在本文中,我们提出了第一所学习的细粒度可扩展图像压缩模型(DeepFGS)来克服上述两个缺点。具体地,我们介绍一个特征分离骨干,将图像信息划分为基本和可伸缩的功能,然后通过信息重新排列策略通过通道重新分配特征通道。以这种方式,我们可以通过一次通过编码来生成连续可扩展的比特流。此外,我们重复使用解码器以降低DeepFGS的参数和计算复杂性。实验表明,我们的DeePFGS优于PSNR和MS-SSIM度量中的所有基于学习的可伸缩图像压缩模型和传统可伸缩图像编解码器。据我们所知,我们的DeePFGS是对学习的细粒度可扩展编码的首次探索,与基于学习的方法相比,实现了最优质的可扩展性。
translated by 谷歌翻译
面部超分辨率(FSR),也称为面部幻觉,其旨在增强低分辨率(LR)面部图像以产生高分辨率(HR)面部图像的分辨率,是特定于域的图像超分辨率问题。最近,FSR获得了相当大的关注,并目睹了深度学习技术的发展炫目。迄今为止,有很少有基于深入学习的FSR的研究摘要。在本次调查中,我们以系统的方式对基于深度学习的FSR方法进行了全面审查。首先,我们总结了FSR的问题制定,并引入了流行的评估度量和损失功能。其次,我们详细说明了FSR中使用的面部特征和流行数据集。第三,我们根据面部特征的利用大致分类了现有方法。在每个类别中,我们从设计原则的一般描述开始,然后概述代表方法,然后讨论其中的利弊。第四,我们评估了一些最先进的方法的表现。第五,联合FSR和其他任务以及与FSR相关的申请大致介绍。最后,我们设想了这一领域进一步的技术进步的前景。在\ URL {https://github.com/junjun-jiang/face-hallucination-benchmark}上有一个策划的文件和资源的策划文件和资源清单
translated by 谷歌翻译
近年来,面部语义指导(包括面部地标,面部热图和面部解析图)和面部生成对抗网络(GAN)近年来已广泛用于盲面修复(BFR)。尽管现有的BFR方法在普通案例中取得了良好的性能,但这些解决方案在面对严重降解和姿势变化的图像时具有有限的弹性(例如,在现实世界情景中看起来右,左看,笑等)。在这项工作中,我们提出了一个精心设计的盲人面部修复网络,具有生成性面部先验。所提出的网络主要由非对称编解码器和stylegan2先验网络组成。在非对称编解码器中,我们采用混合的多路残留块(MMRB)来逐渐提取输入图像的弱纹理特征,从而可以更好地保留原始面部特征并避免过多的幻想。 MMRB也可以在其他网络中插入插件。此外,多亏了StyleGAN2模型的富裕和多样化的面部先验,我们采用了微调的方法来灵活地恢复自然和现实的面部细节。此外,一种新颖的自我监督训练策略是专门设计用于面部修复任务的,以使分配更接近目标并保持训练稳定性。关于合成和现实世界数据集的广泛实验表明,我们的模型在面部恢复和面部超分辨率任务方面取得了卓越的表现。
translated by 谷歌翻译
基于补丁的方法和深度网络已经采用了解决图像染色问题,具有自己的优势和劣势。基于补丁的方法能够通过从未遮盖区域搜索最近的邻居修补程序来恢复具有高质量纹理的缺失区域。但是,这些方法在恢复大缺失区域时会带来问题内容。另一方面,深度网络显示有希望的成果完成大区域。尽管如此,结果往往缺乏类似周围地区的忠诚和尖锐的细节。通过汇集两个范式中,我们提出了一种新的深度染色框架,其中纹理生成是由从未掩蔽区域提取的补丁样本的纹理记忆引导的。该框架具有一种新颖的设计,允许使用深度修复网络训练纹理存储器检索。此外,我们还介绍了贴片分配损失,以鼓励高质量的贴片合成。所提出的方法在三个具有挑战性的图像基准测试中,即地位,Celeba-HQ和巴黎街道视图数据集来说,该方法显示出质量和定量的卓越性能。
translated by 谷歌翻译
上下文自适应熵模型的应用显着提高了速率 - 渗透率(R-D)的性能,在该表现中,超级培训和自回归模型被共同利用来有效捕获潜在表示的空间冗余。但是,潜在表示仍然包含一些空间相关性。此外,这些基于上下文自适应熵模型的方法在解码过程中无法通过并行计算设备,例如FPGA或GPU。为了减轻这些局限性,我们提出了一个学识渊博的多分辨率图像压缩框架,该框架利用了最近开发的八度卷积,以将潜在表示形式分配到高分辨率(HR)和低分辨率(LR)部分,类似于小波变换,这进一步改善了R-D性能。为了加快解码的速度,我们的方案不使用上下文自适应熵模型。取而代之的是,我们利用一个额外的超层,包括超级编码器和超级解码器,以进一步删除潜在表示的空间冗余。此外,将跨分辨率参数估计(CRPE)引入提出的框架中,以增强信息流并进一步改善速率延伸性能。提出了对总损耗函数提出的其他信息损失,以调整LR部分对最终位流的贡献。实验结果表明,与最先进的学术图像压缩方法相比,我们的方法分别将解码时间减少了约73.35%和93.44%,R-D性能仍然优于H.266/VVC(4:4::4:: 2:0)以及对PSNR和MS-SSIM指标的一些基于学习的方法。
translated by 谷歌翻译
语义通信引起了人们的兴趣,因为它可以显着减少在不丢失关键信息的情况下要传输的数据量。大多数现有作品都探索文本的语义编码和传输,并在自然语言处理(NLP)中应用技术来解释文本的含义。在本文中,我们构想了图像数据的语义通信,这些语义数据在语义和带宽敏感方面更为丰富。我们提出了一种基于增强学习的自适应语义编码(RL-ASC)方法,该方法编码超过像素级别的图像。首先,我们定义了图像数据的语义概念,该概念包括类别,空间布置和视觉特征作为表示单元,并提出卷积语义编码器以提取语义概念。其次,我们提出了图像重建标准,该标准从传统像素的相似性演变为语义相似性和感知性能。第三,我们设计了一种基于RL的新型语义位分配模型,其奖励是用自适应量化水平编码某个语义概念后的速率语义感知性能的提高。因此,与任务相关的信息得到正确保存和重建,同时丢弃了较少重要的数据。最后,我们提出了基于生成的对抗网(GAN)的语义解码器,该语义解码器通过注意模块融合本地和全球特征。实验结果表明,所提出的RL-ASC具有噪声稳定性,可以重建视觉上令人愉悦和语义一致的图像,并节省与标准编解码器和其他基于深度学习的图像编解码器相比,可以节省位置的时间。
translated by 谷歌翻译
基于神经网络的图像压缩已经过度研究。模型稳健性很大程度上被忽视,但它对服务能够实现至关重要。我们通过向原始源图像注入少量噪声扰动来执行对抗攻击,然后使用主要学习的图像压缩模型来编码这些对抗示例。实验报告对逆势实例的重建中的严重扭曲,揭示了现有方法的一般漏洞,无论用于底层压缩模型(例如,网络架构,丢失功能,质量标准)和用于注射扰动的优化策略(例如,噪声阈值,信号距离测量)。后来,我们应用迭代对抗的FineTuning来细化掠夺模型。在每次迭代中,将随机源图像和对抗示例混合以更新底层模型。结果通过大大提高压缩模型稳健性来表明提出的FineTuning策略的有效性。总体而言,我们的方法是简单,有效和更广泛的,使其具有开发稳健的学习图像压缩解决方案的吸引力。所有材料都在HTTPS://njuvision.github.io/trobustn中公开访问,以便可重复研究。
translated by 谷歌翻译
Image compression is a fundamental research field and many well-known compression standards have been developed for many decades. Recently, learned compression methods exhibit a fast development trend with promising results. However, there is still a performance gap between learned compression algorithms and reigning compression standards, especially in terms of widely used PSNR metric. In this paper, we explore the remaining redundancy of recent learned compression algorithms. We have found accurate entropy models for rate estimation largely affect the optimization of network parameters and thus affect the rate-distortion performance. Therefore, in this paper, we propose to use discretized Gaussian Mixture Likelihoods to parameterize the distributions of latent codes, which can achieve a more accurate and flexible entropy model. Besides, we take advantage of recent attention modules and incorporate them into network architecture to enhance the performance. Experimental results demonstrate our proposed method achieves a state-of-the-art performance compared to existing learned compression methods on both Kodak and high-resolution datasets. To our knowledge our approach is the first work to achieve comparable performance with latest compression standard Versatile Video Coding (VVC) regarding PSNR. More importantly, our approach generates more visually pleasant results when optimized by MS-SSIM. The project page is at https://github.com/ZhengxueCheng/ Learned-Image-Compression-with-GMM-and-Attention.
translated by 谷歌翻译
成功地应用生成的对抗性网络(GaN)以研究感知单个图像超级度(SISR)。然而,GaN经常倾向于产生具有高频率细节的图像与真实的细节不一致。灵感来自传统细节增强算法,我们提出了一种新的先前知识,先前的细节,帮助GaN减轻这个问题并恢复更现实的细节。所提出的方法名为DSRAN,包括良好设计的详细提取算法,用于捕获图像中最重要的高频信息。然后,两种鉴别器分别用于在图像域和细节域修复上进行监督。 DSRGAN通过细节增强方式将恢复的细节合并到最终输出中。 DSRGAN的特殊设计从基于模型的常规算法和数据驱动的深度学习网络中获得了优势。实验结果表明,DSRGAN在感知度量上表现出最先进的SISR方法,并同时达到保真度量的可比结果。在DSRGAN之后,将其他传统的图像处理算法结合到深度学习网络中,以形成基于模型的深SISR。
translated by 谷歌翻译
面部去夹旨在从模糊的输入图像恢复清晰的面部图像,具有更明确的结构和面部细节。然而,大多数传统的图像和面部去夹方法的重点是整个产生的图像分辨率,而不考虑特殊的面部纹理并且通常产生无充气的细节。考虑到面部和背景具有不同的分布信息,在本研究中,我们设计了一种基于可分离的归一化和自适应非规范化(SnAdnet)的有效面部去孔网络。首先,我们微调面部解析网络以获得精确的面部结构。然后,我们将脸部解析功能划分为面部前景和背景。此外,我们构建了一种新的特征自适应非规范化,以将FAYCIAL结构规则为辅助的条件,以产生更加和谐的面部结构。另外,我们提出了一种纹理提取器和多贴片鉴别器,以增强所生成的面部纹理信息。 Celeba和Celeba-HQ数据集的实验结果表明,所提出的面部去孔网络以更具面部细节恢复面部结构,并在结构相似性索引方法(SSIM),峰值信号方面对最先进的方法进行有利的方法。信噪比(PSNR),Frechet Inception距离(FID)和L1以及定性比较。
translated by 谷歌翻译
我们考虑单个图像超分辨率(SISR)问题,其中基于低分辨率(LR)输入产生高分辨率(HR)图像。最近,生成的对抗性网络(GANS)变得幻觉细节。大多数沿着这条线的方法依赖于预定义的单个LR-intle-hr映射,这对于SISR任务来说是足够灵活的。此外,GaN生成的假细节可能经常破坏整个图像的现实主义。我们通过为Rich-Detail SISR提出最好的伙伴GANS(Beby-GaN)来解决这些问题。放松不变的一对一的约束,我们允许估计的贴片在培训期间动态寻求最佳监督,这有利于产生更合理的细节。此外,我们提出了一种区域感知的对抗性学习策略,指导我们的模型专注于自适应地为纹理区域发电细节。广泛的实验证明了我们方法的有效性。还构建了超高分辨率4K数据集以促进未来的超分辨率研究。
translated by 谷歌翻译
大多数现代脸部完成方法采用AutoEncoder或其变体来恢复面部图像中缺失的区域。编码器通常用于学习强大的表现,在满足复杂的学习任务的挑战方面发挥着重要作用。具体地,各种掩模通常在野外的面部图像中呈现,形成复杂的图案,特别是在Covid-19的艰难时期。编码器很难在这种复杂的情况下捕捉如此强大的陈述。为了解决这一挑战,我们提出了一个自我监督的暹罗推论网络,以改善编码器的泛化和鲁棒性。它可以从全分辨率图像编码上下文语义并获得更多辨别性表示。为了处理面部图像的几何变型,将密集的对应字段集成到网络中。我们进一步提出了一种具有新型双重关注融合模块(DAF)的多尺度解码器,其可以以自适应方式将恢复和已知区域组合。这种多尺度架构有利于解码器利用从编码器学习到图像中的辨别性表示。广泛的实验清楚地表明,与最先进的方法相比,拟议的方法不仅可以实现更具吸引力的结果,而且还提高了蒙面的面部识别的性能。
translated by 谷歌翻译
基于对抗性学习的图像抑制方法,由于其出色的性能,已经在计算机视觉中进行了广泛的研究。但是,大多数现有方法对实际情况的质量功能有限,因为它们在相同场景的透明和合成的雾化图像上进行了培训。此外,它们在保留鲜艳的色彩和丰富的文本细节方面存在局限性。为了解决这些问题,我们开发了一个新颖的生成对抗网络,称为整体注意力融合对抗网络(HAAN),用于单个图像。 Haan由Fog2FogFogre块和FogFree2Fog块组成。在每个块中,有三个基于学习的模块,即雾除雾,颜色纹理恢复和雾合成,它们相互限制以生成高质量的图像。 Haan旨在通过学习雾图图像之间的整体通道空间特征相关性及其几个派生图像之间的整体通道空间特征相关性来利用纹理和结构信息的自相似性。此外,在雾合成模块中,我们利用大气散射模型来指导它,以通过新颖的天空分割网络专注于大气光优化来提高生成质量。关于合成和现实世界数据集的广泛实验表明,就定量准确性和主观的视觉质量而言,Haan的表现优于最先进的脱落方法。
translated by 谷歌翻译