医学图像数据通常在不同的类上不平衡。一流的分类吸引了通过区分多数阶级的少数阶级样本来解决数据不平衡问题的越来越关注。以前的方法通常旨在学习一个新的特征空间来将培训样本映射到一起或通过自动级别的模型拟合训练样本。这些方法主要集中在捕获紧凑或描述性特征,其中不充分利用给定的一个类的样本的信息。在本文中,我们提出了一种基于深度学习的基于深度学习的方法,通过在瓶颈特征上添加约束来学习紧凑的功能,并通过同时培训AutoEncoder来保护描述性功能。通过联合优化约束损失和自动统计学家的重建损失,我们的方法可以了解与给定类相关的更相关的功能,使大多数和少数群体样本更有区别。与先前的方法相比,三个临床数据集(包括MRI乳房图像,FFDM乳房图像和胸部X射线图像)的实验结果获得了最先进的性能。
translated by 谷歌翻译
深度学习模型在各种图像分类任务上取得了显着性能。然而,当数据不平衡时,许多模型在临床或医疗环境中遭受有限的性能。为了解决这一挑战,我们提出了一种医疗知识引导的单级分类方法,可以利用具体域的分类任务知识来提高模型的性能。我们的方法背后的理由是,一些现有的先前医学知识可以纳入数据驱动的深度学习,以促进模型学习。我们设计了一个基于深入的学习的单级分类管道,用于不平衡图像分类,并在三种用例中演示我们如何通过生成额外的中产阶级来利用每个特定分类任务的医学知识来实现​​更高的分类性能。我们在三种不同的临床图像分类任务中评估我们的方法(共8459张图像),与六种最先进的方法相比,显示出卓越的模型性能。这项工作的所有代码将在接受纸张后公开提供。
translated by 谷歌翻译
半监督异常检测旨在使用在正常数据上培训的模型来检测来自正常样本的异常。随着近期深度学习的进步,研究人员设计了高效的深度异常检测方法。现有作品通常使用神经网络将数据映射到更具内容性的表示中,然后应用异常检测算法。在本文中,我们提出了一种方法,DASVDD,它共同学习AutoEncoder的参数,同时最小化其潜在表示上的封闭超球的音量。我们提出了一个异常的分数,它是自动化器的重建误差和距离潜在表示中封闭边距中心的距离的组合。尽量减少这种异常的分数辅助我们在培训期间学习正常课程的潜在分布。包括异常分数中的重建错误确保DESVDD不受常见的极度崩溃问题,因为DESVDD模型不会收敛到映射到潜在表示中的恒定点的常量点。几个基准数据集上的实验评估表明,该方法优于常用的最先进的异常检测算法,同时在不同的异常类中保持鲁棒性能。
translated by 谷歌翻译
无监督的异常检测旨在通过在正常数据上训练来建立模型以有效地检测看不见的异常。尽管以前的基于重建的方法取得了富有成效的进展,但由于两个危急挑战,他们的泛化能力受到限制。首先,训练数据集仅包含正常模式,这限制了模型泛化能力。其次,现有模型学到的特征表示通常缺乏代表性,妨碍了保持正常模式的多样性的能力。在本文中,我们提出了一种称为自适应存储器网络的新方法,具有自我监督的学习(AMSL)来解决这些挑战,并提高无监督异常检测中的泛化能力。基于卷积的AutoEncoder结构,AMSL包含一个自我监督的学习模块,以学习一般正常模式和自适应内存融合模块来学习丰富的特征表示。四个公共多变量时间序列数据集的实验表明,与其他最先进的方法相比,AMSL显着提高了性能。具体而言,在具有9亿个样本的最大帽睡眠阶段检测数据集上,AMSL以精度和F1分数\ TextBF {4} \%+优于第二个最佳基线。除了增强的泛化能力之外,AMSL还针对输入噪声更加强大。
translated by 谷歌翻译
异常检测是确定不符合正常数据分布的样品。由于异常数据的无法获得,培训监督的深神经网络是一项繁琐的任务。因此,无监督的方法是解决此任务的常见方法。深度自动编码器已被广泛用作许多无监督的异常检测方法的基础。但是,深层自动编码器的一个显着缺点是,它们通过概括重建异常值来提供不足的表示异常检测的表示。在这项工作中,我们设计了一个对抗性框架,该框架由两个竞争组件组成,一个对抗性变形者和一个自动编码器。对抗性变形器是一种卷积编码器,学会产生有效的扰动,而自动编码器是一个深层卷积神经网络,旨在重建来自扰动潜在特征空间的图像。这些网络经过相反的目标训练,在这种目标中,对抗性变形者会产生用于编码器潜在特征空间的扰动,以最大化重建误差,并且自动编码器试图中和这些扰动的效果以最大程度地减少它。当应用于异常检测时,该提出的方法会由于对特征空间的扰动应用而学习语义上的富裕表示。所提出的方法在图像和视频数据集上的异常检测中优于现有的最新方法。
translated by 谷歌翻译
Deep autoencoder has been extensively used for anomaly detection. Training on the normal data, the autoencoder is expected to produce higher reconstruction error for the abnormal inputs than the normal ones, which is adopted as a criterion for identifying anomalies. However, this assumption does not always hold in practice. It has been observed that sometimes the autoencoder "generalizes" so well that it can also reconstruct anomalies well, leading to the miss detection of anomalies. To mitigate this drawback for autoencoder based anomaly detector, we propose to augment the autoencoder with a memory module and develop an improved autoencoder called memory-augmented autoencoder, i.e. MemAE. Given an input, MemAE firstly obtains the encoding from the encoder and then uses it as a query to retrieve the most relevant memory items for reconstruction. At the training stage, the memory contents are updated and are encouraged to represent the prototypical elements of the normal data. At the test stage, the learned memory will be fixed, and the reconstruction is obtained from a few selected memory records of the normal data. The reconstruction will thus tend to be close to a normal sample. Thus the reconstructed errors on anomalies will be strengthened for anomaly detection. MemAE is free of assumptions on the data type and thus general to be applied to different tasks. Experiments on various datasets prove the excellent generalization and high effectiveness of the proposed MemAE.
translated by 谷歌翻译
人脑解剖图像的专家解释是神经放射学的中心部分。已经提出了几种基于机器学习的技术来协助分析过程。但是,通常需要对ML模型进行培训以执行特定的任务,例如脑肿瘤分割或分类。相应的培训数据不仅需要费力的手动注释,而且人脑MRI中可以存在多种异常 - 甚至同时发生,这使得所有可能的异常情况都非常具有挑战性。因此,可能的解决方案是一种无监督的异常检测(UAD)系统,可以从健康受试者的未标记数据集中学习数据分布,然后应用以检测​​分布样本。然后,这种技术可用于检测异常 - 病变或异常,例如脑肿瘤,而无需明确训练该特定病理的模型。过去已经为此任务提出了几种基于变异的自动编码器(VAE)技术。即使它们在人为模拟的异常情况下表现良好,但其中许多在检测临床数据中的异常情况下表现较差。这项研究提出了“上下文编码” VAE(CEVAE)模型的紧凑版本,并结合了预处理和后处理步骤,创建了UAD管道(Strega)(Strega),该步骤对临床数据更强大,并显示其在检测到其检测方面的适用性脑MRI中的肿瘤等异常。 The proposed pipeline achieved a Dice score of 0.642$\pm$0.101 while detecting tumours in T2w images of the BraTS dataset and 0.859$\pm$0.112 while detecting artificially induced anomalies, while the best performing baseline achieved 0.522$\pm$0.135 and 0.783$\ PM分别为0.111美元。
translated by 谷歌翻译
对于高度不平衡的信用卡欺诈检测问题,大多数现有方法要么使用数据增强方法或常规的机器学习模型,而基于神经网络的异常检测方法缺乏。此外,很少有研究使用AI解释性工具来研究交易数据的特征重要性,这对于黑盒欺诈检测模块至关重要。考虑到这两个点,我们提出了一个新颖的信用卡欺诈检测框架检测框架,以及负责预测解释的模型解释模块。欺诈检测模型由两个深神经网络组成,这些网络以无监督和对抗性的方式进行了训练。确切地说,发电机是一种旨在重建真实交易数据的自动编码器,而鉴别器是用于欺诈检测的完全连接的网络。解释模块分别具有三个白框解释器,负责自动编码器,鉴别器和整个检测模型的解释。实验结果表明,与基线相比,我们在基准数据集上的欺诈检测模型的最新性能。此外,提出了三个解释器的预测分析,对感兴趣实例的每个特征如何有助于最终模型输出,从而提供了一个清晰的观点。
translated by 谷歌翻译
大量标记的医学图像对于准确检测异常是必不可少的,但是手动注释是劳动密集型且耗时的。自我监督学习(SSL)是一种培训方法,可以在没有手动注释的情况下学习特定于数据的功能。在医学图像异常检测中已采用了几种基于SSL的模型。这些SSL方法有效地学习了几个特定特定图像的表示形式,例如自然和工业产品图像。但是,由于需要医学专业知识,典型的基于SSL的模型在医疗图像异常检测中效率低下。我们提出了一个基于SSL的模型,该模型可实现基于解剖结构的无监督异常检测(UAD)。该模型采用解剖学意识粘贴(Anatpaste)增强工具。 Anatpaste采用基于阈值的肺部分割借口任务来在正常的胸部X光片上创建异常,用于模型预处理。这些异常类似于实际异常,并帮助模型识别它们。我们在三个OpenSource胸部X光片数据集上评估了我们的模型。我们的模型在曲线(AUC)下展示了92.1%,78.7%和81.9%的模型,在现有UAD模型中最高。这是第一个使用解剖信息作为借口任务的SSL模型。 Anatpaste可以应用于各种深度学习模型和下游任务。它可以通过修复适当的细分来用于其他方式。我们的代码可在以下网址公开获取:https://github.com/jun-sato/anatpaste。
translated by 谷歌翻译
与行业4.0的发展相一致,越来越多的关注被表面缺陷检测领域所吸引。提高效率并节省劳动力成本已稳步成为行业领域引起人们关注的问题,近年来,基于深度学习的算法比传统的视力检查方法更好。尽管现有的基于深度学习的算法偏向于监督学习,但这不仅需要大量标记的数据和大量的劳动力,而且还效率低下,并且有一定的局限性。相比之下,最近的研究表明,无监督的学习在解决视觉工业异常检测的高于缺点方面具有巨大的潜力。在这项调查中,我们总结了当前的挑战,并详细概述了最近提出的针对视觉工业异常检测的无监督算法,涵盖了五个类别,其创新点和框架详细描述了。同时,提供了包含表面图像样本的公开可用数据集的信息。通过比较不同类别的方法,总结了异常检测算法的优点和缺点。预计将协助研究社区和行业发展更广泛,更跨域的观点。
translated by 谷歌翻译
深度学习(DL)技术已被广泛用于医学图像分类。大多数基于DL的分类网络通常是层次结构化的,并通过最小化网络末尾测量的单个损耗函数而进行了优化。但是,这种单一的损失设计可能会导致优化一个特定的感兴趣价值,但无法利用中间层的信息特征,这些特征可能会受益于分类性能并降低过度拟合的风险。最近,辅助卷积神经网络(AUXCNNS)已在传统分类网络之上采用,以促进中间层的培训,以提高分类性能和鲁棒性。在这项研究中,我们提出了一个基于对抗性学习的AUXCNN,以支持对医学图像分类的深神经网络的培训。我们的AUXCNN分类框架采用了两项主要创新。首先,所提出的AUXCNN体系结构包括图像发生器和图像鉴别器,用于为医学图像分类提取更多信息图像特征,这是由生成对抗网络(GAN)的概念及其在近似目标数据分布方面令人印象深刻的能力的动机。其次,混合损失函数旨在通过合并分类网络和AUXCNN的不同目标来指导模型训练,以减少过度拟合。全面的实验研究表明,提出的模型的分类表现出色。研究了与网络相关因素对分类性能的影响。
translated by 谷歌翻译
新奇检测是识别不属于目标类分布的样本的任务。在培训期间,缺乏新颖的课程,防止使用传统分类方法。深度自动化器已被广泛用作许多无监督的新奇检测方法的基础。特别地,上下文自动码器在新颖的检测任务中已经成功了,因为他们通过从随机屏蔽的图像重建原始图像来学习的更有效的陈述。然而,上下文AutoEncoders的显着缺点是随机屏蔽不能一致地涵盖输入图像的重要结构,导致次优表示 - 特别是对于新颖性检测任务。在本文中,为了优化输入掩蔽,我们设计了由两个竞争网络,掩模模块和重建器组成的框架。掩码模块是一个卷积的AutoEncoder,用于生成涵盖最重要的图像的最佳掩码。或者,重建器是卷积编码器解码器,其旨在从屏蔽图像重建未受带的图像。网络训练以侵略的方式训练,其中掩模模块生成应用于给予重构的图像的掩码。以这种方式,掩码模块寻求最大化重建错误的重建错误最小化。当应用于新颖性检测时,与上下文自动置换器相比,所提出的方法学习语义上更丰富的表示,并通过更新的屏蔽增强了在测试时间的新颖性检测。 MNIST和CIFAR-10图像数据集上的新奇检测实验证明了所提出的方法对尖端方法的优越性。在用于新颖性检测的UCSD视频数据集的进一步实验中,所提出的方法实现了最先进的结果。
translated by 谷歌翻译
机器学习模型通常会遇到与训练分布不同的样本。无法识别分布(OOD)样本,因此将该样本分配给课堂标签会显着损害模​​型的可靠性。由于其对在开放世界中的安全部署模型的重要性,该问题引起了重大关注。由于对所有可能的未知分布进行建模的棘手性,检测OOD样品是具有挑战性的。迄今为止,一些研究领域解决了检测陌生样本的问题,包括异常检测,新颖性检测,一级学习,开放式识别识别和分布外检测。尽管有相似和共同的概念,但分别分布,开放式检测和异常检测已被独立研究。因此,这些研究途径尚未交叉授粉,创造了研究障碍。尽管某些调查打算概述这些方法,但它们似乎仅关注特定领域,而无需检查不同领域之间的关系。这项调查旨在在确定其共同点的同时,对各个领域的众多著名作品进行跨域和全面的审查。研究人员可以从不同领域的研究进展概述中受益,并协同发展未来的方法。此外,据我们所知,虽然进行异常检测或单级学习进行了调查,但没有关于分布外检测的全面或最新的调查,我们的调查可广泛涵盖。最后,有了统一的跨域视角,我们讨论并阐明了未来的研究线,打算将这些领域更加紧密地融为一体。
translated by 谷歌翻译
开放式识别使深度神经网络(DNN)能够识别未知类别的样本,同时在已知类别的样本上保持高分类精度。基于自动编码器(AE)和原型学习的现有方法在处理这项具有挑战性的任务方面具有巨大的潜力。在这项研究中,我们提出了一种新的方法,称为类别特定的语义重建(CSSR),该方法整合了AE和原型学习的力量。具体而言,CSSR用特定于类的AE表示的歧管替代了原型点。与传统的基于原型的方法不同,CSSR在单个AE歧管上的每个已知类模型,并通过AE的重建误差来测量类归属感。特定于类的AE被插入DNN主链的顶部,并重建DNN而不是原始图像所学的语义表示。通过端到端的学习,DNN和AES互相促进,以学习歧视性和代表性信息。在多个数据集上进行的实验结果表明,所提出的方法在封闭式和开放式识别中都达到了出色的性能,并且非常简单且灵活地将其纳入现有框架中。
translated by 谷歌翻译
肾细胞癌(RCC)是一种常见的癌症,随着临床行为的变化。懒惰的RCC通常是低级的,没有坏死,可以在没有治疗的情况下监测。激进的RCC通常是高级的,如果未及时检测和治疗,可能会导致转移和死亡。虽然大多数肾脏癌在CT扫描中都检测到,但分级是基于侵入性活检或手术的组织学。确定对CT图像的侵略性在临床上很重要,因为它促进了风险分层和治疗计划。这项研究旨在使用机器学习方法来识别与病理学特征相关的放射学特征,以促进评估CT图像而不是组织学上的癌症侵略性。本文提出了一种新型的自动化方法,即按区域(Corrfabr)相关的特征聚集,用于通过利用放射学和相应的不对齐病理学图像之间的相关性来对透明细胞RCC进行分类。 CORRFABR由三个主要步骤组成:(1)特征聚集,其中从放射学和病理图像中提取区域级特征,(2)融合,放射学特征与病理特征相关的放射学特征在区域级别上学习,并且(3)在其中预测的地方学到的相关特征用于仅使用CT作为输入来区分侵略性和顽固的透明细胞RCC。因此,在训练过程中,Corrfabr从放射学和病理学图像中学习,但是在没有病理图像的情况下,Corrfabr将使用CORFABR将侵略性与顽固的透明细胞RCC区分开。 Corrfabr仅比放射学特征改善了分类性能,二进制分类F1分数从0.68(0.04)增加到0.73(0.03)。这证明了将病理疾病特征纳入CT图像上透明细胞RCC侵袭性的分类的潜力。
translated by 谷歌翻译
基于可视异常检测的内存模块的重建方法试图缩小正常样品的重建误差,同时将其放大为异常样品。不幸的是,现有的内存模块不完全适用于异常检测任务,并且异常样品的重建误差仍然很小。为此,这项工作提出了一种新的无监督视觉异常检测方法,以共同学习有效的正常特征并消除不利的重建错误。具体而言,提出了一个新颖的分区内存库(PMB)模块,以有效地学习和存储具有正常样本语义完整性的详细特征。它开发了一种新的分区机制和一种独特的查询生成方法,以保留上下文信息,然后提高内存模块的学习能力。替代探索了拟议的PMB和跳过连接,以使异常样品的重建更糟。为了获得更精确的异常定位结果并解决了累积重建误差的问题,提出了一个新型的直方图误差估计模块,以通过差异图像的直方图自适应地消除了不利的误差。它可以改善异常本地化性能而不会增加成本。为了评估所提出的异常检测和定位方法的有效性,在三个广泛使用的异常检测数据集上进行了广泛的实验。与基于内存模块的最新方法相比,提出的方法的令人鼓舞的性能证明了其优越性。
translated by 谷歌翻译
生成的对抗网络(GAN)是在众多领域成功使用的一种强大的深度学习模型。它们属于一个称为生成方法的更广泛的家族,该家族通过从真实示例中学习样本分布来生成新数据。在临床背景下,与传统的生成方法相比,GAN在捕获空间复杂,非线性和潜在微妙的疾病作用方面表现出增强的能力。这篇综述评估了有关gan在各种神经系统疾病的成像研究中的应用的现有文献,包括阿尔茨海默氏病,脑肿瘤,脑老化和多发性硬化症。我们为每个应用程序提供了各种GAN方法的直观解释,并进一步讨论了在神经影像学中利用gans的主要挑战,开放问题以及有希望的未来方向。我们旨在通过强调如何利用gan来支持临床决策,并有助于更好地理解脑部疾病的结构和功能模式,从而弥合先进的深度学习方法和神经病学研究之间的差距。
translated by 谷歌翻译
在本文中,我们认为由于专家的昂贵的像素级注释以及大量未经发布的正常和异常图像扫描,近年来近年来引起了近年来越来越多的注意力的问题。我们介绍了一个分割网络,该分割网络利用对抗学习将图像分成两种切割,其中一个落入用户提供的参考分布。这种基于对抗的选择性切割网络(ASC-Net)桥接基于簇的深度分割和基于对抗基于对抗的异常/新奇检测算法的两个域。我们的ASC网络从正常和异常的医疗扫描中学到医疗扫描中的分段异常,没有任何掩盖的监督。我们在三个公共数据集中评估这一无监督的异常分段模型,即脑肿瘤细分的Brats 2019,肝脏病变分割和脑病变细分的MS-SEG 2015,以及脑肿瘤细分的私人数据集。与现有方法相比,我们的模型展示了无监督异常分段任务中的巨大性能增益。虽然与监督学习算法相比,仍有进一步提高性能的空间,但有希望的实验结果和有趣的观察揭示了使用用户定义的知识构建无监督学习算法的医疗异常识别。
translated by 谷歌翻译
Obtaining ground truth data in medical imaging has difficulties due to the fact that it requires a lot of annotating time from the experts in the field. Also, when trained with supervised learning, it detects only the cases included in the labels. In real practice, we want to also open to other possibilities than the named cases while examining the medical images. As a solution, the need for anomaly detection that can detect and localize abnormalities by learning the normal characteristics using only normal images is emerging. With medical image data, we can design either 2D or 3D networks of self-supervised learning for anomaly detection task. Although 3D networks, which learns 3D structures of the human body, show good performance in 3D medical image anomaly detection, they cannot be stacked in deeper layers due to memory problems. While 2D networks have advantage in feature detection, they lack 3D context information. In this paper, we develop a method for combining the strength of the 3D network and the strength of the 2D network through joint embedding. We also propose the pretask of self-supervised learning to make it possible for the networks to learn efficiently. Through the experiments, we show that the proposed method achieves better performance in both classification and segmentation tasks compared to the SoTA method.
translated by 谷歌翻译
组织分割是病理检查的主要主机,而手动描述则过于繁重。为了协助这一耗时和主观的手动步骤,研究人员已经设计了自动在病理图像中分割结构的方法。最近,自动化机器和基于深度学习的方法主导了组织分割研究。但是,大多数基于机器和深度学习的方法都是使用大量培训样本进行监督和开发的,其中PixelWise注释很昂贵,有时无法获得。本文通过将端到端的深层混合模型与有限的指标集成以获取准确的语义组织分割,从而引入了一种新颖的无监督学习范式。该约束旨在在计算优化函数期间集中深层混合模型的组成部分。这样做,可以大大减少当前无监督学习方法中常见的多余或空的班级问题。通过对公共和内部数据集的验证,拟议的深度约束高斯网络在组织细分方面取得了更好的性能(Wilcoxon签名级测试)更好的性能(平均骰子得分分别为0.737和0.735),具有改善与其他现有的无监督分割方法相比。此外,该方法与完全监督的U-NET相比,提出的方法具有相似的性能(P值> 0.05)。
translated by 谷歌翻译